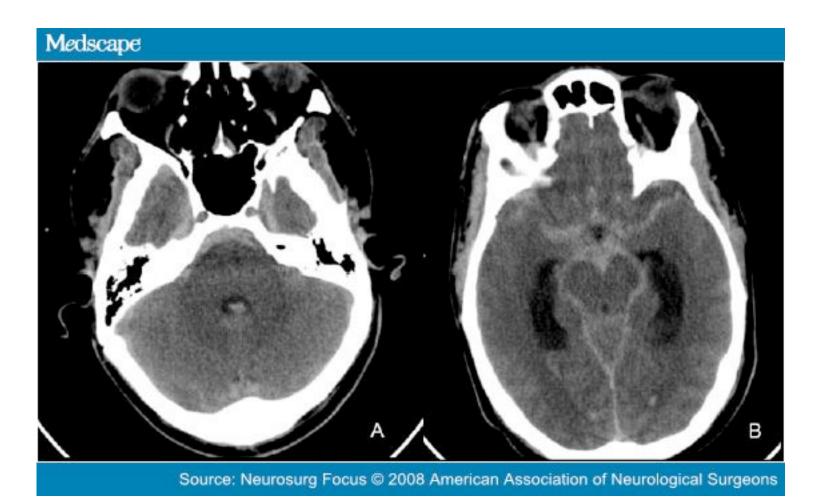
Pression intracrânienne: Physiologie et Monitorage


Cours de sciences de base 20 mars 2014

Plan

- Vignettes cliniques
- Anatomie
- Physiologie
- Monitorage:
 - Indications
 - Types de moniteurs
 - Courbes de PIC
- Compartimentation et herniation
- Retour sur vignettes cliniques


- Femme 48 ans
- HSA grade IV non sécurisée
- Hydrocéphalie aigue
- TA 160/95

SOP: DVE pré-embolisation

- Femme 48 ans
- Gliome de bas grade
- TA 120/70

 SOP: Craniotomie frontale droite pour résection tumorale

Vignettes cliniques #1 et #2

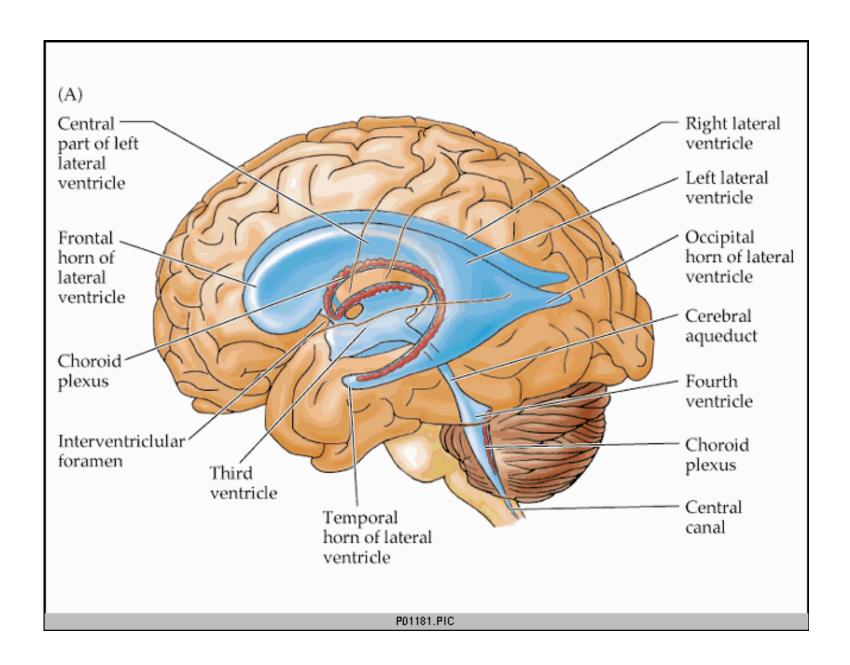
Questions:

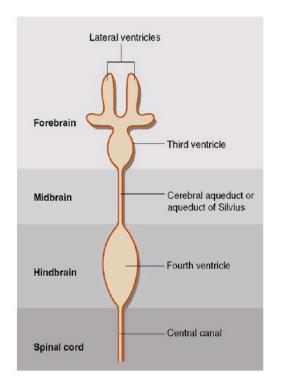
- PIC ?
- PPC ?
- Hémodynamie optimale ?
- Courbe pression / volume
- Danger?

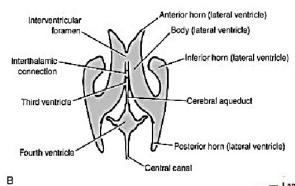
Anatomie

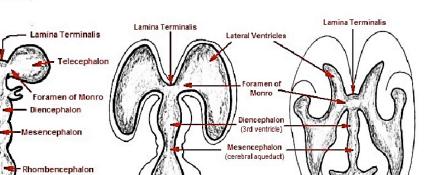
- Système ventriculaire
- Communications
- Citernes
- Méninges

Système ventriculaire

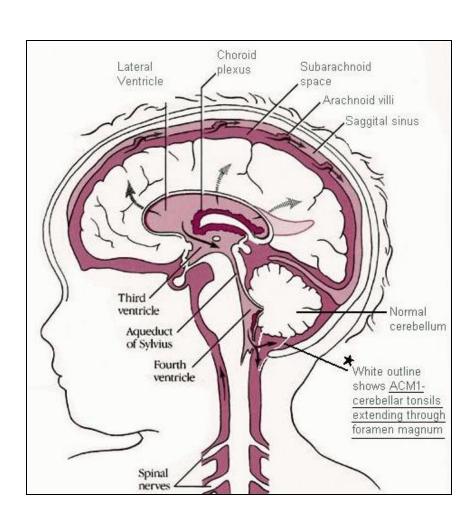

- 4 cavités remplies de liquide
 - 2 ventricules latéraux
 - 3^e et 4^e ventricules
- Tapissées de cellules épendymaires
- Remplies de liquide céphalo-rachidien (LCR)


Ventricules latéraux

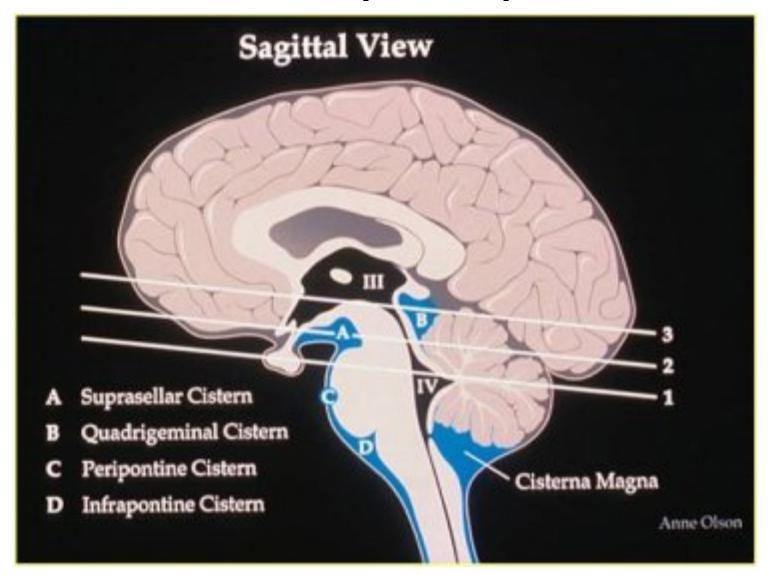

- Forme de « C »
- Divisés:
 - Corne antérieure a/n du lobe frontal
 - Corne postérieure a/n du lobe occipital
 - Corne inférieure a/n du lobe temporal
 - Corps a/n du lobe pariétal
- Le corps se divise en cornes postérieures et inférieures a/n du thalamus postérieur
- La corne antérieure est un continuum du corps a/n du foramen de Monroe

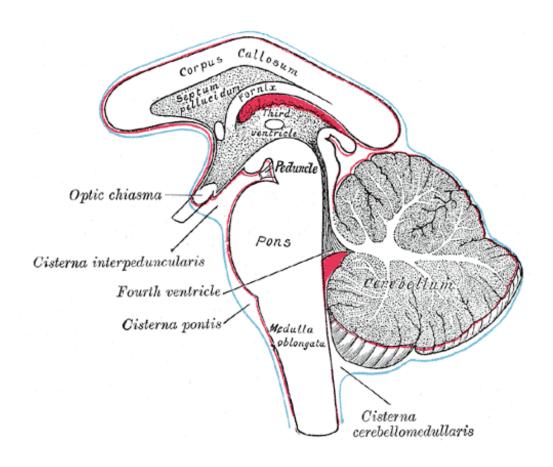

Communications

- Entre ventricules latéraux et 3^e (Monroe)
- Entre 3^e et 4^e ventricules (Sylvius)
- Entre le 4^e ventricule et l'espace sous arachnoïdien:
 - 2 foramina latéraux (Luschka)
 - 1 foramen médian (Magendie)



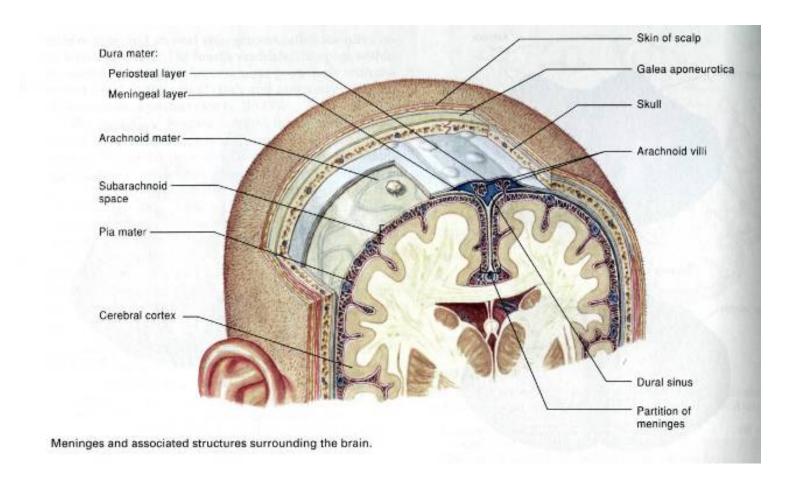
http://www.scribd.com/doc/36585714/Neuroanatomy-Ventricular-System-and-CSF


Anatomie


Ventricules:

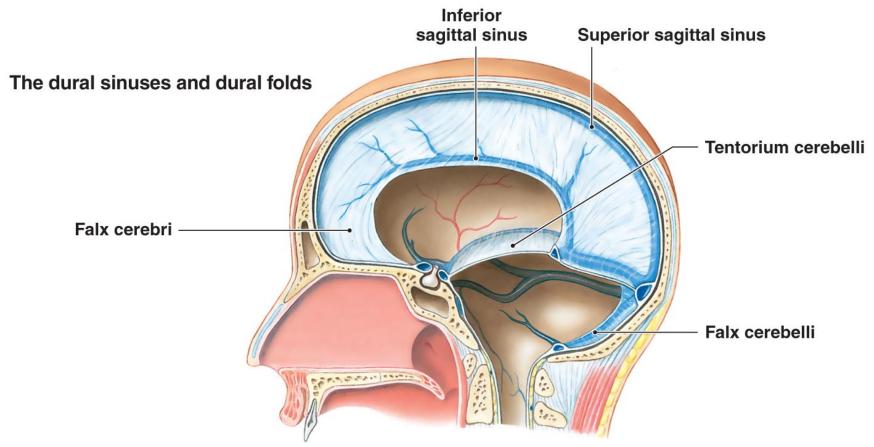
- Latéraux
- Troisième
- Quatrième
- Communications:
 - Foramen de Monro
 - Aqueduc de Sylvius
 - Foramina de Luschka
 - Foramen de Magendie
- Citernes

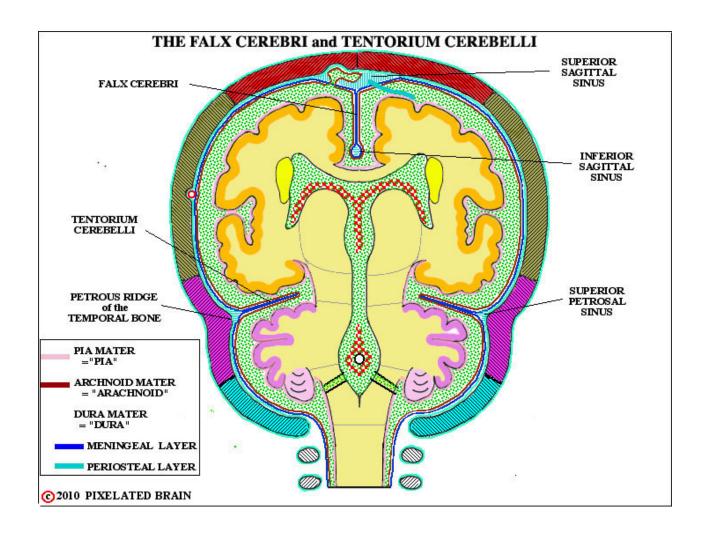
Citernes principales



Anatomie

- 3 couches membraneuses couvrant le cerveau
- Continuité avec les méninges couvrant la moelle épinière
 - -Dure-mère
 - -Arachnoïde
 - -Pie-mère


Méninges

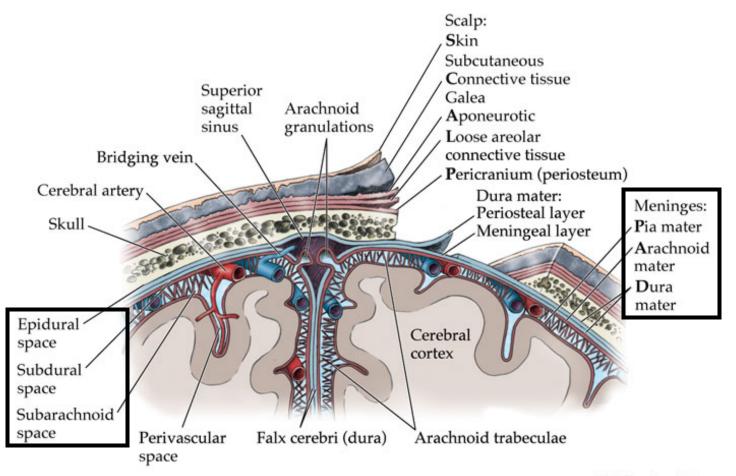


- Membrane la plus externe, composée d'une portion périostée et une portion méningée
- Composée de tissu conjonctif collagéneux; la plus résistante
- En continuité avec la dure mère spinale au niveau du foramen magnum

Forme 4 replis:

- 1.Faux du cerveau: séparation verticale entre les 2 hémisphères cérébraux
- 2.Tente du cervelet: séparation du lobe occipital et du cervelet, attachée médialement à la faux du cerveau
- 3. Faux du cervelet: petit repli médian situé postérieurement à la fosse postérieure, avec petite extension entre les hémisphères cérébelleux
- 4. Selle diaphragmatique: plancher pour la fosse hypophysaire dans la selle turcique

Arachnoïde:


- Membrane délicate et transparente, située entre la dure mère (en externe) et la pie mère (en interne)
- En forme de toile d'araignée
- Passe sur les scissures sans s'invaginer
- Avasculaire

Pie mère:

- Membrane la plus interne, très mince (mais plus épaisse que l'arachnoïde)
- Hautement vascularisée
- Adhère de façon très intime avec la surface cérébrale en suivant les scissures

- Espace épidural:
 - Superficiel à la dure-mère (donc diminue les risques infectieux)
 - Espace virtuel (donc plus difficile d'accès)
- Espace sous-dural:
 - Espace virtuel
 - Sépare la dure mère et l'arachnoïde
- Espace sous-arachnoïdien:
 - Entre l'arachnoïde et la pie-mère
 - Contient le LCR

Anatomie

@ 2002 Sinauer Associates, Inc.

Physiologie: LCR

- Liquide remplissant:
 - Système ventriculaire
 - Espace sous arachnoïdien
 - Cérébral
 - Spinal
- Volume total approximatif: 150 ml
- Liquide clair

Physiologie: LCR

Contenu:

- Trace de protéines
- GB absent ou rares
 - Si présents: suspicion d'infection
- Sels inorganiques similaires à plasma
 - Na, Cl, Mg plus élevés
 - K, Ca, Glucose plus bas
 - Glucose approximativement la moitié du sang

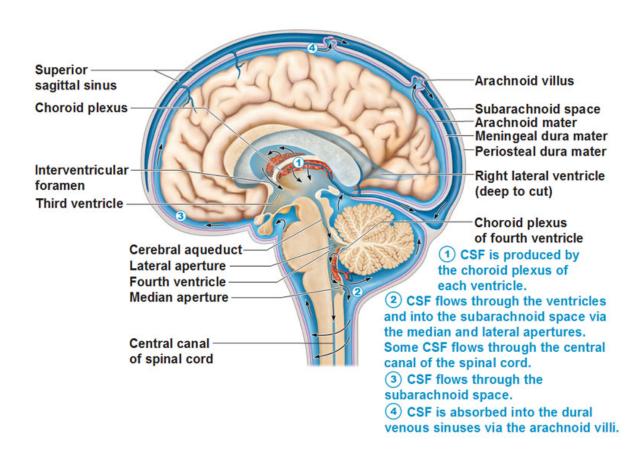
Production LCR

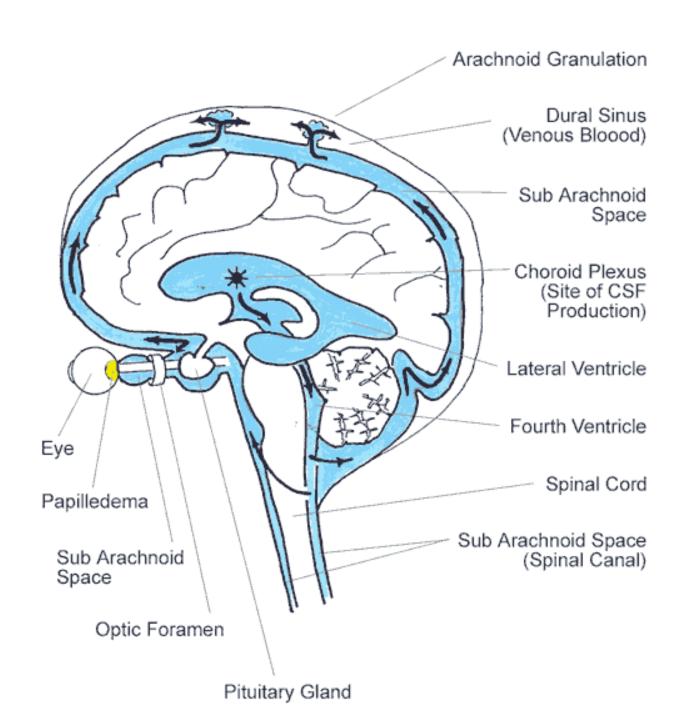
- Plexus choroïdiens (50-80%)
 - Structures intraventriculaires
 - Ventricules latéraux et 4^e ventricule surtout
 - 3e ventricule (contribution moindre)
 - Apport vasculaire: artères choroïdiennes, cérébelleuses inf et post
 - Na-K-ATPase en échange de K+ et H+
- Surface épendymaire (ad 30%)
 - Tapisse les ventricules
 - Oxydation du glucose par le cerveau
- Substance cérébrale
 - Via espaces périvasculaires (espace Virchow-Robin)
 - Ultrafiltration des capillaires cérébraux

Physiologie: LCR

Production:

- Taux de formation: 0.35 ml/minute (ou 20 ml/h, or 500 ml/j)
- Temps de renouvellement: 5 heures
- Production non régulée par la pression
- Production non affectée par les mécanismes de réabsorption

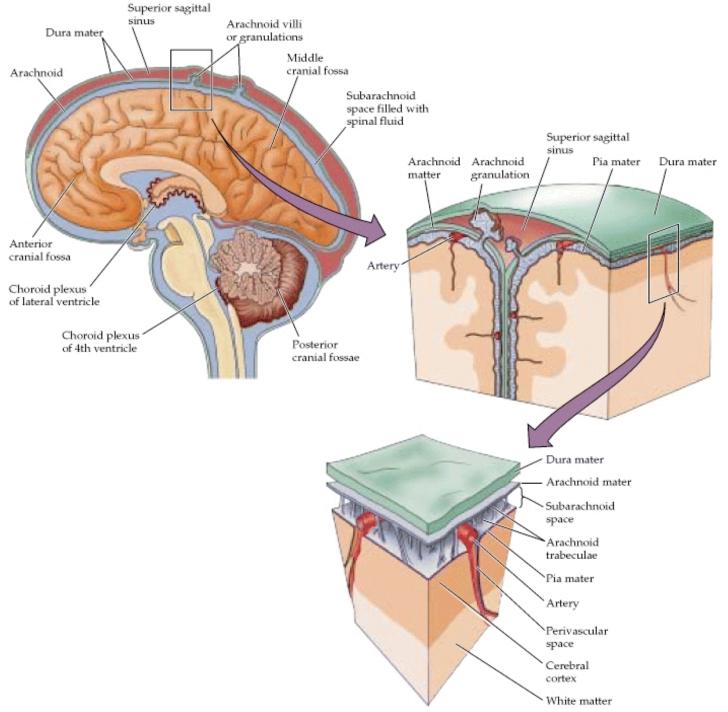

Physiologie: LCR

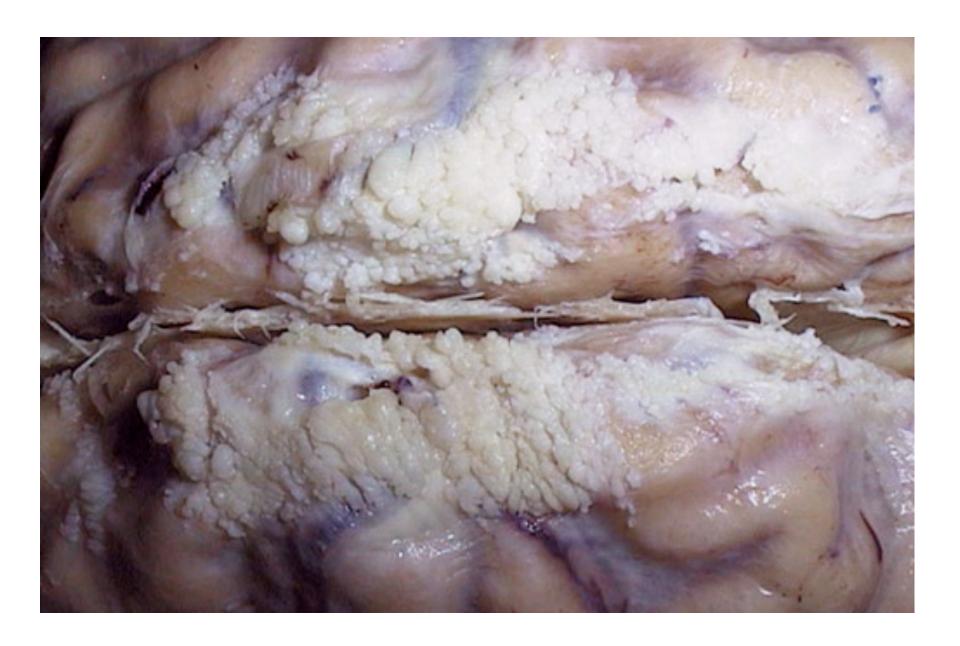

Circulation:

- Système ventriculaire
- Sortie par foramen de Luschka et de Magendie
- Circulation a/n espace sous-arachnoïdien
 - Cérébral
 - Spinal
- Absorption

Circulation du LCR

Circulation of Cerebrospinal Fluid (CSF)




Absorption du LCR

- Villosités et granulations arachnoïdiennes (sinus veineux duraux)
 - Villosités arachnoïdiennes: structures microscopiques
 - Granulations arachnoïdiennes: structures macroscopiques
- -Sites intracrâniens (85%) ou spinaux (15%)
- Possible si pression du LCR > pression veineuse
 - Open channels (valves unidirectionnelles)

Villosités arachnoïdiennes

- Se projettent dans les sinus veineux
 - Surtout a/n du sinus sagittal supérieur
- Regroupées pour former les granulations
 - Taille et nombre augmentent avec l'âge
 - Calcification avec âge avancé
- Chaque villosité forme un diverticulum qui se projette dans la dure-mère

LCR: rôles

- Support et protection lors des mouvements ou changements de position
 - Cerveau = solide visco-élastique
 - Poids dans l'air: 1400g
 - Poids effectif dans le LCR: 50g
 - Support et protection aidés par méninges et calvarium
- Contrôle de l'environnement chimique
 - Préservation de l'homéostasie du SNC
 - Substrat physiologique
 - Transport des produits du métabolise neuronal

Physiologie: LCR

- Facteurs affectant la production de LCR:
 - Augmentation de la PIC (peu d'effet)
 - Stimulation neurogénique
 - Augmentation ad 30% via stimulation sympathique
 - Tumeurs (papillome du plexus choroïde)
- Facteurs affectant l'absorption de LCR:
 - Modifications de la PIC et de la pression veineuse

Physiologie: LCR

Médicaments:

- Effets sur la PIC basés sur la combinaison du changement de la production et de l'absorption (effet net)
- Anesthésiques inhalés:
 - Profil dommageable pour enflurane et halotane
 - Possibilité de PIC augmentée avec Iso, Sévo et Desf avec effet dose dépendant, et étiologie différente:
 - Desf: augmentation de la production
 - Iso et Sévo: augmentation de la résistance à l'absorption
- Anesthésiques IV:
 - Profil neutre ou favorable pour la plupart sauf:
 - KÉTAMINE qui augmente la résistance à l'absorption

Physiologie: LCR

Médicaments:

- Narcotiques: profil neutre ou favorable
- Diurétiques:
 - La plupart diminuent la formation de LCR
 - Acetazolamide est le meilleur: inhibition de l'anhydrase carbonique: diminue la quantité de ions hydrogène disponibles pour l'échange avec le Na, ce qui diminue le gradient osmotique.
 - Furosémide: diminue le transport de Na et de Cl, réduisant ainsi le gradient osmotique
 - Mannitol: diminue la production via les plexus choroïdes et diminue le flot du tissu cérébral (ECF space) vers le compartiment de LCR macroscopique

Doctrine Monroe-Kellie

- 3 compartiments essentiellement non-compressibles :
 - 80% tissu cérébral (1200-1600 cc)
 - 10% LCR (100-150 cc)
 - 10% sang (100-150 cc)
- Boîte crânienne rigide

Doctrine Monroe-Kellie

- Situation normale:
 - Équilibre dynamique entre les 3 composantes
- Situation anormale:
 - Augmentation du volume d'une des composantes
 - Doit entraîner une diminution du volume des autres composantes SINON
 - Augmentation de la PIC

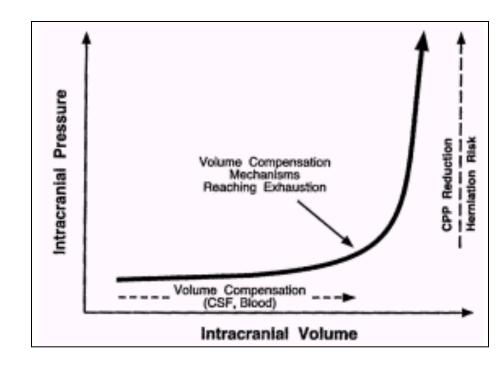
Facteurs entraînant la modification du volume intracrânien

- Volume ajouté: vitesse d'expansion
- Volume tissulaire: formation d'œdème
- LCR:
 - Production et absorption
 - Position de la tête
 - Translocation extracrânienne
- Volume sanguin:
 - TA
 - PaCO₂
 - Position de la tête
 - Médicaments vasodilatateurs cérébraux

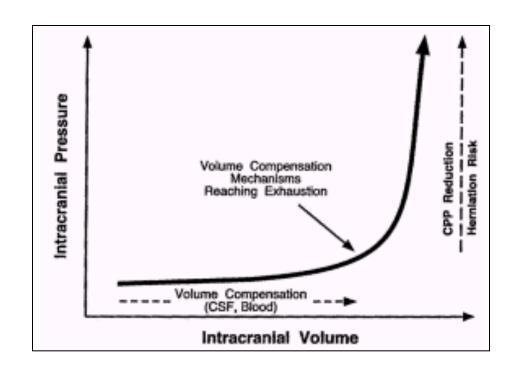
Facteurs entraînant la modification du volume intracrânien

Exemple: tumeur cérébelleuse avec compression du 4e ventricule:

- 1....
- 2....
- 3....
- 4....


Facteurs entraînant la modification du volume intracrânien

Exemple: tumeur cérébelleuse avec compression du 4e ventricule:


- 1. Augmentation de volume secondaire à la pathologie elle-même
- 2. Augmentation du tissu cérébral sain via œdème péri-lésionnel
- 3. Augmentation du volume de LCR via diminution de l'absorption (circulation de LCR interrompue car 4^e ventricule est obstrué) et par impossibilité de translocation extracrânienne vers l'espace sous arachnoïdien spinal
- 4. Augmentation du volume sanguin via augmentation de la TA (si perte d'autorégulation), et via augmentation de la PCO2 si compression du tronc cérébral

Relation pression/volume:

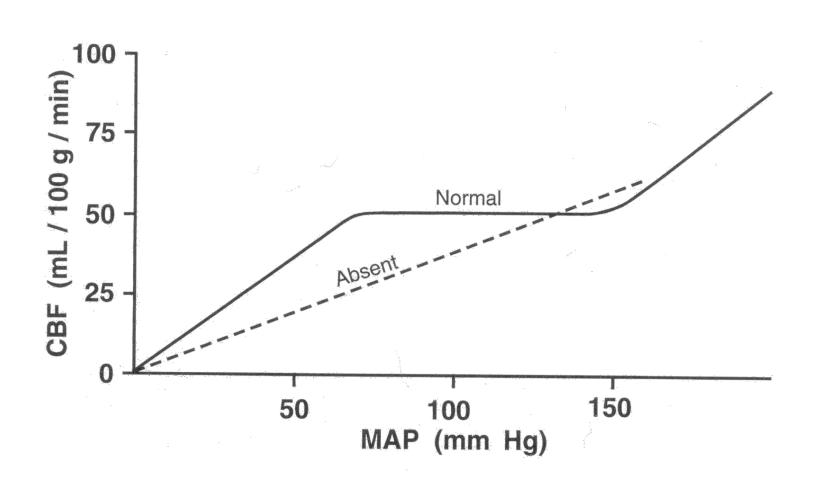
- Non linéaire
- Reflet de:
 - Propriétés viscoélastiques du cerveau
 - Intégrité des mécanismes compensatoires

- Compensation:
 - Expansion du volume d' un des 3 compartiments
 - Contraction du volume des autres compartiments
- Compensation presque complète:
 - Augmentation minimale du volume et de la PIC
- Mécanismes compensatoires épuisés:
 - Augmentation de la PIC si augmentation du volume intracrânien

Mécanismes compensatoires:

- LCR:
 - Translocation du LCR vers l'espace sous arachnoïdien spinal
 - Augmentation de l'absorption de LCR
 - Mécanisme primaire et principal
- Volume sanguin cérébral:
 - Translocation du sang veineux vers réseau veineux extracrânien
 - Mécanisme secondaire et limité
- Tissu cérébral:
 - Réduction de volume très limitée

Mécanismes compensatoires sont donc:


- Essentiels pour maintenir la PIC constante
- Épuisables dans plusieurs circonstances

Efficacité des mécanismes compensatoires:

- Taille de la masse
- Vitesse d'expansion de la masse
- Degré d'ædème cérébral
- Intégrité de l'autorégulation


- Autorégulation: Capacité du cerveau à maintenir constant le débit sanguin cérébral malgré des variations de pression de perfusion cérébrale (qui elle est proportionnelle à la TA si la PIC est stable)
- Intégrité de l'autorégulation: si dysfonction autorégulatoire, les changements de TA ou les facteurs affectant le volume sanguin cérébral vont avoir un effet significatif sur la compliance cérébrale et la PIC

Autorégulation cérébrale

FIGURE 1 MONRO-KELLIE DOCTRINE

INTRACRANIAL COMPENSATION FOR EXPANDING MASS

Compliance:

- Tolérance à l'ajout de volume
- $-\Delta V/\Delta P$
- <0.5ml/mmHg = pathologique</p>
- Indice de réserve compensatoire
- Quantification de la compliance:
 - Pressure-volume index (PVI)
 - $PVI = \Delta V / (log (Pp / Po))$
 - Volume ajouté pour faire augmenter la PIC de 10 fois
 - PVI 22-30 ml = normal
 - PVI 13 ml ou moins = critique

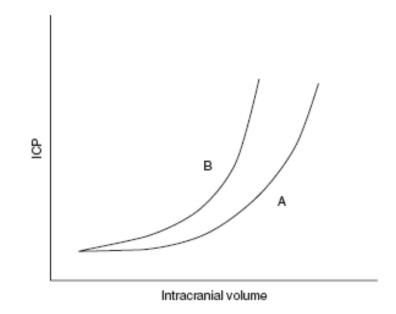
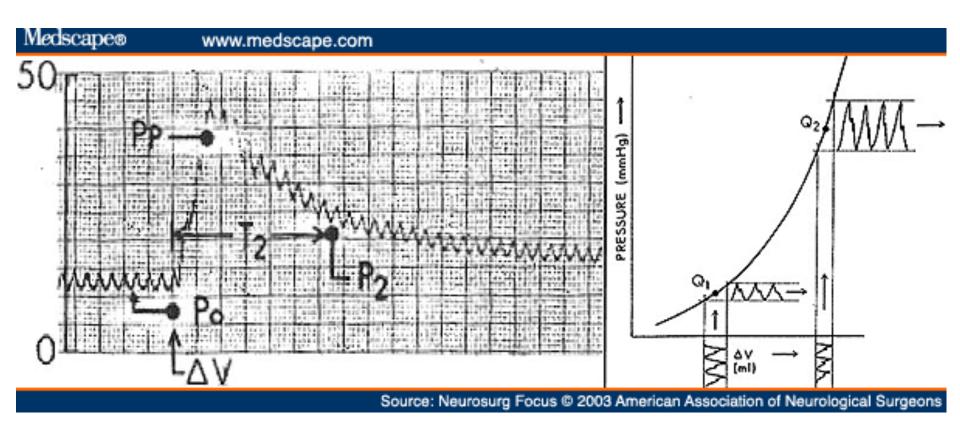



Figure 1 Pressure volume curves of the craniospinal contents: (A) normal pressure-volume curve of a compliant system; (B) pressure-volume curve when brain compliance is reduced.

- Élastance:
 - Changement de pression par rapport à un changement unitaire de volume
 - $-\Delta P / \Delta V$ (inverse de la compliance)
- Quantifiée par le VPR (volume-pressure response test)
- VPR = $\Delta P / 1 \text{ ml}$ (1 sec.)
 - Basse pression: élastance faible
 - Haute pression: élastance élevée
- VPR:
 - Normal: 0 -2 mmHg / ml
 - Pathologique: ≥ 5 mmHg / ml

Capacitance cérébrale:

- Concept de vitesse d'accomodation du cerveau à un volume intracrânien
- Déterminée par des mesures de compliance dans le temps
- Prédiction de l'impact clinique d'une lésion cérébrale évolutive

Capacitance cérébrale:

- Méningiome lentement évolutif
 - Taille impressionnante
 - Asymptomatique
- Hémorragie intraparenchymateuse
 - HTIC aigue
 - Dommages cérébraux ischémiques
 - Compression
 - Herniation

- Valeurs normales de la PIC
 - Adultes: 0-10 mmHg (<10-15 mmHg)
 - Enfants: 0-5 mmHg (3-7 mmHg)
- Variations physiologiques de la PIC
 - Position corporelle
 - Pression intra-abdominale et intra-thoracique
 - Toux peut augmenter la PIC ad 60 mmHg
 - Retour veineux cérébral
 - Sommeil

- Valeurs anormales de la PIC:
 - > 15 mmHg soutenu
 - 20 mmHg: limite acceptable chez le trauma crânien
 - 21 40 mmHg: HTIC modérée
 - > 40 mmHg: HTIC sévère
 - > 60 mmHg: HTIC critique
- Importance de la PIC:
 - Ischémie (PPC = TAM PIC)
 - Compression

Buts du monitorage

- Optimiser la pression de perfusion cérébrale (PPC = TAM PIC)
- Détecter précocement les variations de la PIC
- Évaluer les répercussions de nos actions (positionnement, anesthésie)
- Guider le traitement
- Améliorer le devenir

3 classes d'indications:

- 1. Traumatiques
- 2. Non traumatiques
- 3. Post-opératoires et suivi

Traumatiques:

- Aucune indication classe I
- GCS 3 8 et CT scan anormal
- GCS < 8 et CT scan normal:
 - Âge > 40 ans
 - Posture anormale uni ou bilatérale
 - TA systolique < 90 mmHg
- Exception: Patient à risque et nécessitant anesthésie générale

```
Trauma : CGS ≤ 7
```

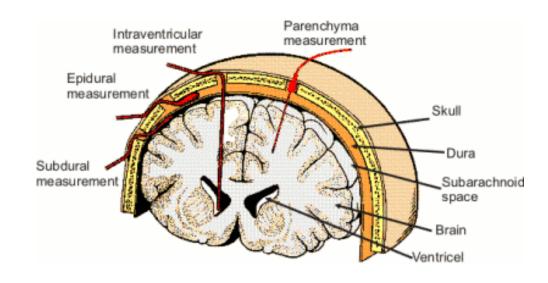
- Scan aN 50 -60 % HTIC
- Scan N 13 % HTIC
- Scan N + critères :
 - + TA < 90
 - > 40 ans
 - posture anormale
 - 0 1 4 % HTIC
 - -2-3 60 % HTIC

Non traumatiques

- Infectieuse (encéphalite)
- Ischémique (noyade, arrêt cardiorespiratoire)
- Métabolique (syndrome de Reye, encéphalopathie hépatique)
- Obstructive (hydrocéphalie)
- Tumorale
- Vasculaire (ACV, thrombose du sinus sagittal, HSA)

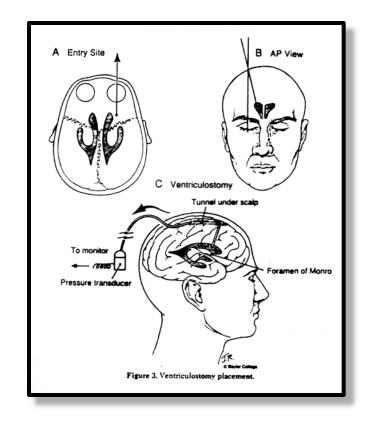
Post-opératoires et suivi

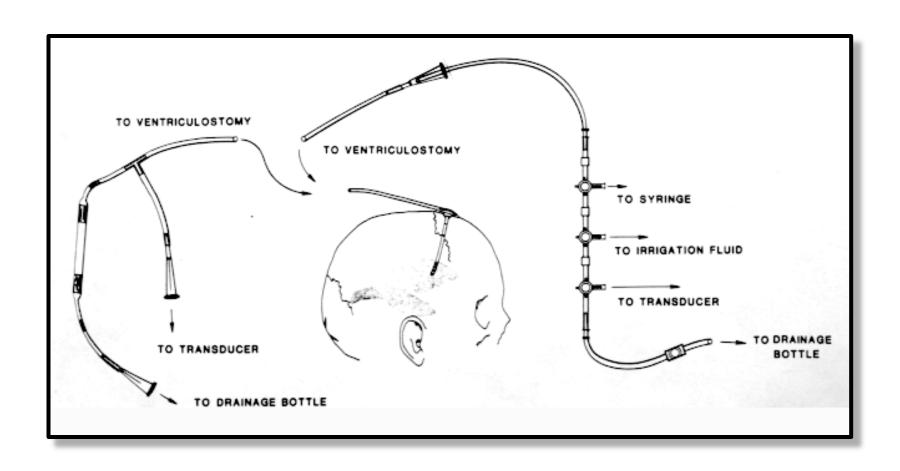
- Patients à risque de complications (saignement, œdème, vasospasme)
- Patients non-évaluables cliniquement (sédation, curarisation)


Types de moniteurs

4 sites anatomiques:

- 1. Intraventriculaire
- 2. Intraparenchymateux
- 3. Sous-arachnoïdien
- 4. Épidural


3 types de transducteurs:


- 1. Mécanique
 - Capteur externe
 - Capteur interne
- 2. Pneumatique
- 3. Optique

- Gold standard
- Site de mesure: intraventriculaire
- Type de transducteur: mécanique avec capteur externe
- Technologie:
 - Système fermé: ventriculostomie reliée à un transducteur de pression externe via tubulure liquidienne
 - Possibilité de drainage de LCR et d'irrigation
 - Monitorage de la PIC
 - Zéro a/n canal auditif externe (foramen de Monro)

- Insertion aseptique à l'urgence, aux SI ou en SOP à travers trou de trépan
- Repères anatomiques:
 - Antérieurement à la suture coronale
 - 3-4 cm latéralement à ligne médiane
 - Positionnement a/n corne antérieure du ventricule latéral
 - Hémisphère non-dominant
- Tunnelisation sous-cutanée ou fixation sur scalp

Avantages:

- Retrait LCR thérapeutique ou diagnostic
- Calcul de la compliance
- Re-calibration facile
- Faible coût

Inconvénients:

- Installation difficile (surtout si distorsion anatomique)
- Obstruction de la colonne liquidienne
- Complications hémorragiques (1%) ou infectieuses

Cathéter intraventriculaire

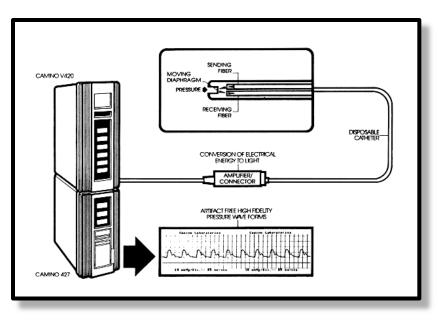
Complications infectieuses

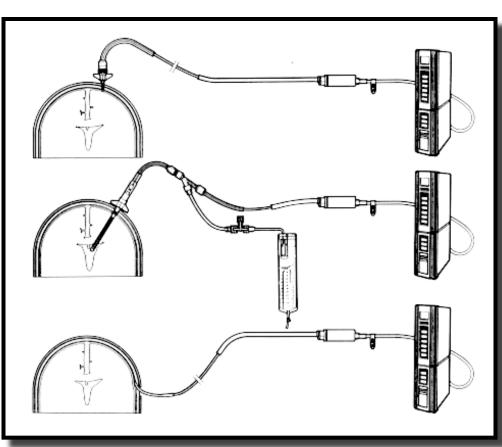
- Colonisation vs infection
- Colonisation 10-17% (ad 40%)
- Facteurs de risque:
 - Hémorragie intracérébrale avec extension intraventriculaire
 - PIC > 20 mmHg
 - Durée du monitorage (<72h vs >5 jours)
 - Neurochirurgie concomitante
 - Irrigation du système
 - Infection systémique
- Antibioprophylaxie non recommandée

Cathéter intraparenchymateux

- Site de mesure: parenchyme cérébral
- Type de transducteur: fibre optique
- Monitorage de la PIC lorsque les ventricules sont non accessibles ou que le drainage de LCR est non nécessaire
- Technologie fibre optique:
 - Transmission de pression par le mouvement d'un diaphragme au bout du cathéter
 - Émission de lumière qui est réfléchie sur le diaphragme
 - Différence entre lumière émise et réfléchie est proportionnelle à la PIC
- Mise à zéro à la pression atmosphérique avant l'insertion

Cathéter intraparenchymateux


Avantages:


- Installation facile
- Précis et fiable
- Risque infectieux plus faible
- Dommages cérébraux moindres

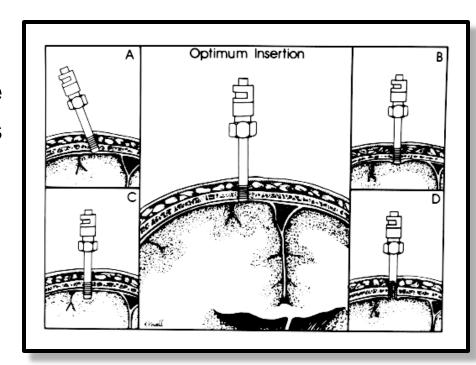
Inconvénients:

- Retrait de LCR impossible
- Système fragile
- Recalibration impossible
- Coût élevé

Transducteur fibre optique

Transducteur fibre optique

Avantages:


- Risque infectieux faible
- Fiable et précis
- Monitorage de PIC, DSC, oxygénation tissulaire

Inconvénients:

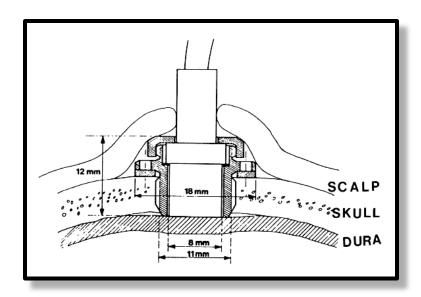
- Recalibration impossible in situ
- Retrait de LCR impossible (sauf si associé à ventriculostomie)

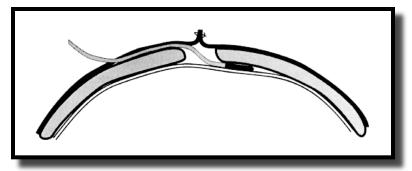
Vis sous-arachnoïdienne

- Site de mesure: espace sousarachnoïdien
- Type de transducteur : mécanique avec capteur externe
- Monitorage de la PIC lorsque les ventricules sont non accessibles (œdème cérébral)
- Technologie:
 - Vis creuse insérée via trou de trépan
 - Transducteur de pression externe via tubulure liquidienne
 - Interface via membrane arachnoïdienne

Vis sous-arachnoïdienne

Avantages:


- Pas de pénétration du tissu cérébral
- Localisation des ventricules non nécessaire
- Risques infectieux et hémorragique plus faibles


Inconvénients:

- Retrait de LCR impossible
- Atténuation des ondes avec le temps
- Occlusion du système
- Complication: fuite de LCR

Monitorage épidural

- Site de mesure: espace épidural
- Types de transducteur:
 - Mécanique avec capteur interne (capteur, cathéter)
 - Pneumatique
 - Optique
- Technologie:
 - Insertion via trou de trépan
 - Interface via dure-mère

Monitorage épidural

- Avantages:
 - Risque infectieux faible
- Inconvénients:
 - Difficulté d'insertion
 - Retrait de LCR impossible
 - Méthode de mesure indirecte
 - Précision et fiabilité moindres

Monitorage hybride

Cathéter combiné:

- Cathéter intraventriculaire
- Transducteur fibre optique ou transducteur mécanique interne
- Drainage ventriculaire et monitorage simultanés

Monitorage pneumatique

- Technologie récente:
 - Cathéter avec ballon (air)
 - Détection des variations de pression à l'extrémité du KT
 - Recalibration in situ automatique
 - Intraparenchymateux ou intraventriculaire
- Possibilité de mesure de la compliance
 - Outil de recherche
 - Détection précoce des décompensations critiques
 - Corrélation avec devenir non démontrée

Monitorage pneumatique

Types de moniteurs

TABLE 13-4. ICP MONITORING DEVICES AND THEIR MANUFACTURERS

Device Type	Manufacturer
Intraventricular devices	
Catheter	Cordis Corporation; Pudenz-Schulte Medical
Fiberoptic transducer	Camino Laboratories Inc.; InnerSpace Medical
Intraparenchymal devices	
Fiberoptic transducer	Camino Laboratories Inc.; InnerSpace Medical
Subarachnoid devices	
Bolt	Pudenz-Schulte Medical
Cup catheter	Cordis Corporation
Fiberoptic transducer	Camino Laboratories Inc.; InnerSpace Medical
Epidural devices	
Strain-gauge transducer	Medical Measurements Inc.
Fiberoptic transducer	Camino Laboratories Inc.; InnerSpace Medical
Pneumatic transducer	Ladd Research Industries Inc.

Courbes de PIC

Courbe normale:

- Tracé similaire à courbe artérielle
- •3 composantes artérielles distinctes:
 - •P1: onde de percussion
 - •P2: onde tidal
 - •P3: onde dicrote
- •1 composante veineuse (descente P1)
- Variations respiratoires dans le temps

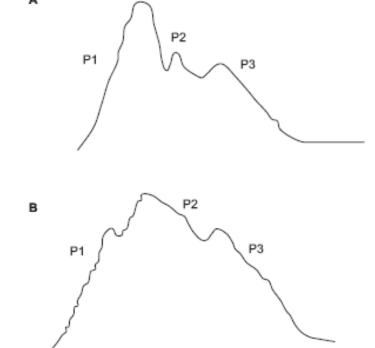
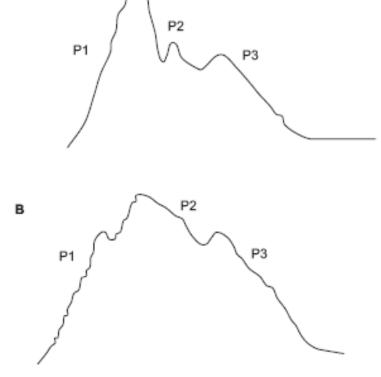
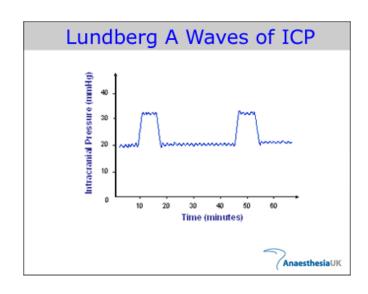


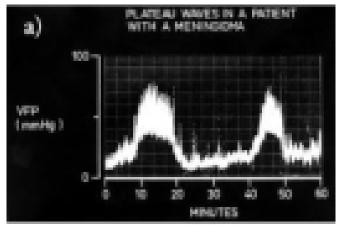
Figure 2 Intracranial pressure waveforms: (A) normal; (B) intracranial pressure waveform from a non-compliant system with P2 exceeding P1.

Courbes de PIC

Courbe anormale:

- Augmentation de la valeur de base
- •Onde P2 > onde P1
- Disparition de la descente P1
- Amplification des variations respiratoires
- Peut précéder l'augmentation de la PIC
- •Représente un cerveau non compliant

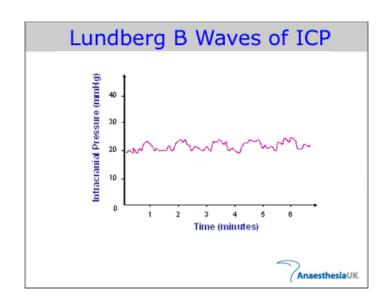



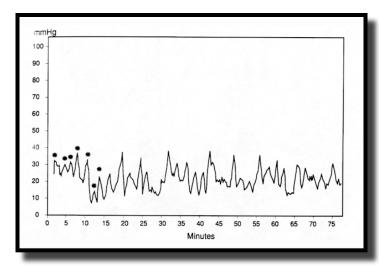

Figure 2 Intracranial pressure waveforms: (A) normal; (B) intracranial pressure waveform from a non-compliant system with P2 exceeding P1.

Courbes de PIC: ondes de Lundberg

Ondes A plateau

- Montée abrupte
- Plateau ad 50 mmHg ou plus
- Durée 5-20 minutes
- Descente abrupte
- Augmentation de la PIC de base
- Compliance grandement réduite
- Toujours pathologique
- Souvent associé à détérioration neurologique

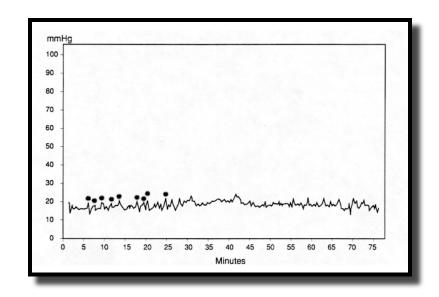




Courbes de PIC: ondes de Lundberg

Ondes B

- Oscillations rythmiques q 1-2 minutes
- Augmentation crescendo de la PIC (20-30 mmHg)
- Descente abrupte de la PIC à niveau de base
- Souvent associées avec respiration Cheyne-Stokes
- Peut précéder apparition des ondes A
- Décompensation imminente



Courbes de PIC: ondes de Lundberg

Ondes C

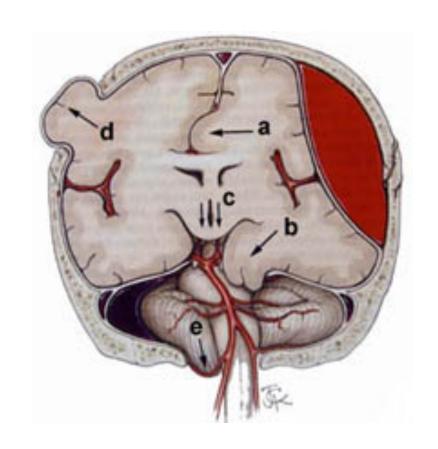
- Oscillations: fréquence 4-8 par minute
- Synchrone avec variations de la TA
- Amplitude plus faible que ondes B
- Signification pathologique limitée
- Parfois présentes même si PIC normale

Compartimentation

- Compartimentation: barrières anatomiques qui font en sorte que des zones de l'espace intracrânien se comportent comme si elles étaient isolées du reste de l'espace intracrânien
- Séparation hémisphérique: limite le déplacement droite - gauche
- Séparation tente du cervelet: limite le déplacement cranio-caudal

Compartimentation

- Séparation hémisphérique:
 - Faux du cerveau
 - Communication via ouverture à la base de la faux au niveau du corps calleux
- Séparation fosses antérieure / moyenne de la fosse postérieure:
 - Tente du cervelet
 - Communication via incisure tentorielle
- Isolation infratentorielle:
 - Communication avec espace sous-arachnoidien spinal via foramen magnum


Herniation de tissu cérébral

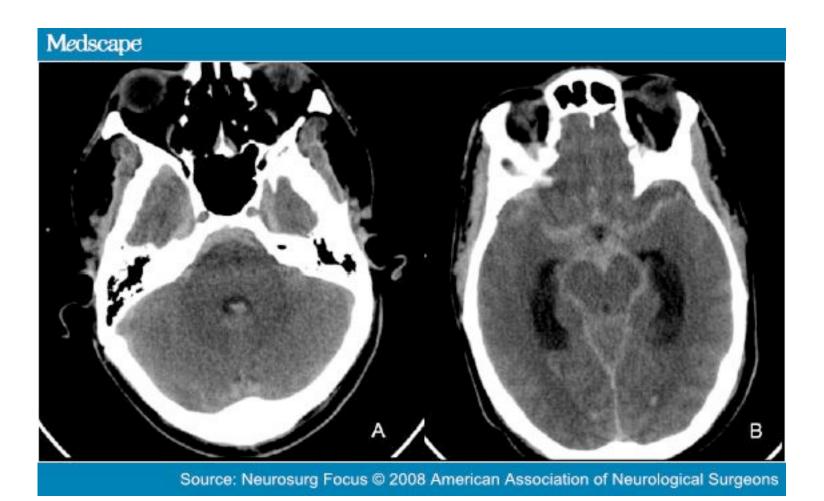
Herniation:

- Déplacement du contenu intracrânien
- D' un compartiment vers un autre
- Gradient de pression plus grand que résistance du tissu cérébral à la distorsion

Herniation de tissu cérébral

- a) Subfalcine
- b) Transtentorielle uncale
- c) Transtentorielle centrale
- d) Transcalvariale
- e) Tonsillaire

Herniation de tissus cérébral


- Subfalcine: précurseur...
- Transcalvariale: rarement symptomatique
- Transtantorielle uncale:
 - Midriase ispsilatérale (compression du NCIII)
 - Hémianopsie homonyme controlatérale (artère cérébrale postérieure)
 - Hémiparésie controlatérale (compression des voies pyramidales)
 - Hémiparésie ipsilatérale (déplacement latéral du tronc)
 - Coma, cushing, patterns respiratoires anormaux (tronc cérébral)

Herniation de tissus cérébral

- Transtentorielle centrale:
 - Midriase bilatérale (ou myosis)
 - Posture anormale bilatérale
 - DI central
- Tonsillaire:
 - Herniation des amygdales cérébelleuses dans le foramen magnum, comprimant le bulbe
 - Position cervicale anormale
 - Insuffisance respiratoire et instabilité hémodynamique
 - Paralysie flasque


- Femme 48 ans
- HSA grade IV non sécurisée
- Hydrocéphalie aigue
- TA 160/95

SOP: DVE pré-embolisation

- Femme 48 ans
- Gliome de bas grade
- TA 120/70

 SOP: Craniotomie frontale droite pour résection tumorale

Vignettes cliniques #1 et #2

Questions:

- PIC ?
- PPC ?
- Courbe pression / volume
- Hémodynamie optimale ?
- Danger?

Conclusions

- Anatomie et physiologie
- Monitorage de la PIC:
 - Connaître les indications
 - Plusieurs options disponibles (théoriquement)
 - Imagerie et examen clinique

QUESTIONS