Intra-aortic Balloon Pump: Indications and Interpretation of Tracings

Claudia H. Viens, MD, FRCPC, FASE

IABP

- Goal is to augment myocardial perfusion
 - Increases coronary blood flow during diastole
 - Unloads left ventricle during systole
- Accomplished by mass displacement of blood (30 to 50 mL)

Royal College

 You are called to the ER for a patient with angina, ST elevations, hypotension and shock....

- Emergency, full stomach
- ACLS algorithm
- Optimize myocardial oxygen supply and demand
 - MONA
 - Morphine
 - Oxygen
 - Nitroglycerin
 - Aspirin
 - Vasopressors
 - Inotropes
 - IABP
- Consult cardiology, cardiac surgery

TABLE 32-10

Intra-aortic Balloon Pump Counterpulsation Indications and Contraindications

Indications

- 1/ Cardiogenic shock
 - Myocardial infarction
 - b. Myocarditis
 - c. Cardiomyopathy
- Failure to separate from CPB
- Stabilization of preoperative patient
 - Ventricular septal defect
 - b. Mitral regurgitation
- Stabilization of noncardiac surgical patient
- Procedural support during coronary angiography
- 6. Bridge to transplantation

Contraindications

- Aortic valvular insufficiency
- Aortic disease
 - Aortic dissection
 - b. Aortic aneurysm
- Severe peripheral vascular disease
- Severe noncardiac systemic disease
- Massive trauma
- Patients with "do not resuscitate" instructions
- Mitral SAM with dynamic outflow tract obstruction

of Datascope Corporation.)

Figure 32-4 Arterial waveforms seen during intra-aortic balloon pump (IABP) assist. The first two waveforms are unassisted, and the last is assisted. Notice the decreased end-systolic and end-diastolic pressures and augmented diastolic pressures caused by IABP augmentation and the (correct) point at which balloon inflation occurs. These are waveforms generated by a correctly positioned and timed balloon. (Courtesy of Datascope Corporation.)

Diastolic Augmentation

- -Coronary blood flow and pressure 个
 - -↑oxygen delivery
 - ↑ coronary collateral circulation
- perfusion to distal organs (kidneys, brain)

eforms seen during intra-aortic balloon pump (IABP) assist. The first two waveforms are unassisted, and the last is assisted. Notice the decreased end-systolic and end-diastolic pressures and augmented diastolic pressures caused by IABP augmentation and the (correct) point at which balloon inflation occurs. These are waveforms generated by a correctly positioned and timed balloon. (Courtesy of Datascope Corporation.)

Balloon Deflation

- -At onset of systole during isovolemic contraction
- -Isovolemic contraction is shortened
 - -Sudden evacuation of 40mL of blood from aorta
 - -Left ventricle does not have to generate as much pressure to achieve ejection
 - -↓peak systolic pressure
 - -↓oxygen demand
- -Reduced afterload allows ventricle to empty
 - -↑stroke volume, cardiac output
 - -↓preload if elevated

during intra-aortic balloon pump are unassisted, and the last is tolic and end-diastolic pressures used by IABP augmentation and flation occurs. These are waveed and timed balloon. (Courtesy

Figure 32-4 Arterial waveforms seen during intra-aortic balloon pump (IABP) assist. The first two waveforms are unassisted, and the last is assisted. Notice the decreased end-systolic and end-diastolic pressures and augmented diastolic pressures caused by IABP augmentation and the (correct) point at which balloon inflation occurs. These are waveforms generated by a correctly positioned and timed balloon. (Courtesy of Datascope Corporation.)

Medscape

- Increased coronary perfusion
- Decrease myocardial oxygen demand
- Increased cardiac output

Clinical Parameters

- Decreased signs of ischemia: angina, ST changes, arrhythmias
- Increased coronary blood flow
- Decreased afterload
- Decreased oxygen demand
- Increased cardiac output
- Increased urine output
- Decreased preload (PCWP, CVP)
- Decreased pulmonary congestion, improved arterial oxygenation
- Improved mentation
- Decreased heart rate
- Decreased lactic acidosis
- Increased pulse pressure

Counterpulsation Applied An Introduction to Intra-Aortic Balloon Pumping. Arrow international. Table 2 p23.

Errors in Timing

Errors in Timing

Timing set for optimal benefit!

1:1 – cannot accurately assess timing

Inflation optimal, early deflation – poor afterload reduction

Early inflation, deflation optimal. Premature classification and continuous classification optimal and continuous classification optimal.

Inflation optimal. Late deflation - 个O2 demand & afterload

Early inflation, early deflation – decreased course output, poor afterload reduction

Late inflation. Deflation optimal – little increase in perfusion pressure

Late inflation. Late deflation – little increase fusion pressure, increased afterload

Late inflation, early deflation – why bother having an IABP?

ad Ea

Heart rate slowed, deflation initially early, then corrected

Trouble shooting in OR

- ECG trigger may not be functioning properly
 - Check slave cable connections
 - Check patient leads
 - Change ECG lead source
- Autofill may fail
 - Check helium and refill, then check balloon
- Balloon may not augment CO adequately
 - Check balloon position
 - Reposition balloon is necessary

- 38) Mécanisme IABP, lequel ne diminue pas:
- a) LVEDV
- b) Pression diastolique a/n racine aortique
- c) Pression systolique a/n racine aortique
- d) MVO2

- 39) Regarding IABP, all of the following are contraindications **EXCEPT**:
- Xa) Thrombocytopenia,
- b) Aortic insufficiency
- c) Thoracic aortic aneurysm
- d) Atherosclerosis,

Proper timing, but....

- Balloon is too small
- Patient's stroke volume is much higher or lower than balloon volume
- Balloon is too low
- Severe hypovolemia
- Low systemic vascular resistance
- Catheter kinked

Proper timing, but...

- Balloon too large
- Balloon pressure
 waveform height
 reflects pressure in
 aorta