Équilibre acido-basique et désordres électrolytiques

Dr Martin Girard Anesthésiologiste-intensiviste Hôpital Notre-Dame du CHUM

Plan

- ⋆ Déséquilibre acido-basique
 - →Physiologie
 - →Interprétations
- → Désordres électrolytiques
 - +Sodium
 - **→**Potassium
 - +Calcium

Physiologie acide-base

- Nécessité de garder pH sous contrôle stricte
 - $+pH 7,36 7,44 (pH = -log_{10}[H^+])$
 - ◆Concentration 1 million de fois plus faible que Na⁺
 - →Influence fonction des protéines

Acides et bases

Selon Bronsted

- ◆ Un acide est une molécule qui peut donner un ion H+
 - + P. ex. H_2CO_3 , HCl, NH_4^+ , $H_2PO_4^-$
- → Une base est une molécule qui peut accepter un ion H+
- + Physiologiquement, 2 catégories importantes
 - → Acides carboniques (H₂CO₃)
 - → Autres (p. ex. H₂SO₄, NaH₂PO₄/Na₂HPO₄)

- Mécanismes de régulation
 - ◆ Tampons intra- et extracellulaires
 - + Immédiat (extracellulaires), 2 4h (intracellulaires)
 - + Altération de la ventilation minute
 - → Commence minutes, max à 12 24 heures, nul à 5 6 jours si compensation métabolique
 - → Réabsorption / synthèse de bicarbonates au niveau rénal
 - → Commence 2h post, max à 5 6 jours

Equation d'Henderson-Hasselbalch

*pH = pK_a + log ([base] / [acide])

+pH = 6,1 + log ([HCO₃-] / 0,03 x P_{CO2})

Tampons extra- et intracellulaires

- *Amoindrir conséquence d'un ajout d'acide ou de base sur le pH
- ◆Exemple phosphate

$$+HPO_4^{-2} + H^+ < -> H_2PO_4^{-1}$$

- +Si ajout 2 mmol HCl à partir pH 6,8
 - +Si avec tampon phosphate -> pH 6,62
 - +Si aucun système tampon -> pH 2,7

Système bicarbonate / CO₂

$$+ CO_{2 (g)} < -> CO_{2 (a)}$$

+ [CO2] = 0,03 P_{CO^2}

- $+ CO_{2 (a)} + H_2O <-> H_2CO_3 <-> H^+ + HCO_3^-$
- → Combien de mmol d'HCl doit-on infusé pour faire varié le pH de 7,40 à 7,10?
 - + Si Va stable, 1,1 mmol
 - + Si Va augmente pour garder CO2 stable, 12 mmol

Principaux systèmes tampons

- Extracellulaires
 - ◆ Système bicarbonate / CO₂
 - + Système phosphate
 - + Système protéines
- → Intracellulaires
 - + Système phosphates
 - + Système protéines
 - → Système hémoglobine
- → Masse osseuse

Terminologie

- ★ Acidémie
 - **→** pH < 7,36
- + Alcalémie
 - + pH > 7,44
- + Acidose
 - + Phénomène responsable de la diminution du pH
- → Alcalose
 - + Phénomène responsable de l'augmentation du pH

Interprétation équilibre acido-basique

- ♣ Processus primaire
 - →Reflet du pH
- + Compensation
 - → Jamais de compensation complète ou de "surcompensation"

Exemples

- Exemple #1
 - + pH 7,38
 - + P_{CO2} 39
 - + Bic 22
- → Exemple #2
 - + pH 7,45
 - **+** P_{CO2} 20
 - + Bic 13

- ★ Exemple #3
 - + pH 7,40
 - + P_{CO2} 60
 - + Bic 36
- ◆ Exemple #4
 - + pH 6,92
 - + P_{CO2} 40
 - + Bic 8

Déséquilibre	Changement	Adaptation
Acidose métabolique	↓ [HCO3-]	↓ 1,2 mm Hg / mEq/L
Alcalose métabolique	↑ [HCO3-]	↑ 0,7 mm Hg / mEq/L
Acidose respiratoire	↑ P _{CO2}	
aigue		↑ 1 mEq/L / 10 mm Hg
chronique		↑ 3,5 mEq/L / 10 mm Hg
Alcalose respiratoire	↓ P _{CO2}	
aigue		↓ 2 mEq/L / 10 mm Hg
chronique		↓ 4 mEq/L / 10 mm Hg

Exemple #4

+ pH 6,92

P_{CO2} 40

- Bic 8
- → Processus primaire: acidose métabolique
- + $[HCO_3^-]_{normaux}$ $[HCO_3^-]_{actuels}$ = $\Delta[HCO_3^-]$
- +24 8 = 16
- + Compensation respiratoire
 - $+\Delta[HCO_3^-]$ x 1,2 mm Hg / mEq/L
 - $+16 \times 1,2 = 19 \text{ mm Hg}$
 - $+ P_{CO2}$ attendue = 40 19 = 21
 - $+P_{CO2}$ mesurée = 40
- → Donc, désordre mixte --> acidose métabolique et respiratoire

Exemple #2

- + pH 7,45 P_{CO2} 20
 - P_{CO2} 20 Bic 13
 - → Processus primaire: alkalose respiratoire
 - $+ P_{CO2 \text{ normale}} P_{CO2 \text{ actuelle}} = \Delta P_{CO2}$
 - +40 20 = 20
 - + Compensation métabolique
 - $+\Delta P_{CO2} \times 2 \text{ mEq/L} / 10 \text{ mm Hg}$
 - $+20 \times 2 / 10 = 4 \text{ mEq/L}$
 - + [HCO₃-] attendus = 24 4 = 20
 - + [HCO₃-] mesurés = 13
 - → Donc, désordre mixte --> alkalose respiratoire et acidose métabolique

Alcalose métabolique

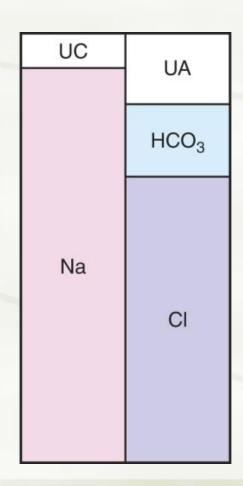
- Symptômes
 - → Reliés au processus pathophysiologique
- → Diagnostique différentiel
 - +Chlore urinaire
- **→** Traitement

Alcalose métabolique diagnostique

- Pertes d'ions H⁺
 - Pertes GI
 - Sécrétions gastriques (vomissement ou TNG)
 - → Antiacide (+ Kayexalate)
 - + Chloridorrhée congénitale
 - + Pertes rénales
 - Diurétiques
 - + Excès minéralocorticoïde
 - → Post-hypercapnie chronique
 - → Faible apport chlore
 - → Penicillines
 - → Hypercalcémie
 - + Translocation
 - → Hypokalémie

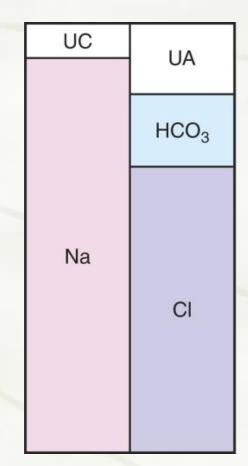
- + HCO₃ exogène
 - → Transfusion massive
 - Administration de NaHCO₃
 - → Syndrome du lait et des alcalins
 - + Hémodialyse au citrate
- → Alkalose de contraction
 - Vomissements avec achlorydrie
 - Pertes par sudation chez FKP

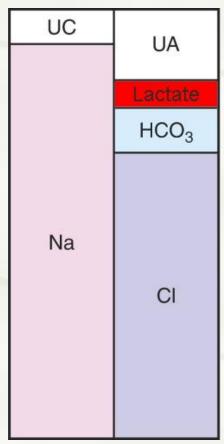
Alcalose métabolique traitement


- ★ Traiter cause sous-jacente
 - ⋆ P. ex. IPP si drainage TNG abondant
- → Traitement « symptomatique »
 - + Alcalose répondant au NaCl
 - → Administration de Cl⁻ facteur important
 - + Alcalose résistante au NaCl
 - + Etats oedémateux: acetazolamide, HCl
 - ★ Excès minéralocorticoïdes: chirurgie, amiloride/spironolactone
 - + Hypokaliémie sévère: réplétion K+
 - + Insuffisance rénale: HCl, dialyse

Acidose métabolique

- Symptômes
- + Mécanismes
 - → Ajout H⁺
 - → Perte HCO₃⁻
 - + Inadéquation rénale
- → Diagnostique différentiel
 - → Trou anionique (AG)
 - $+\Delta AG / \Delta[HCO_3^-]$
- + Traitement


Trou anionique


- Principe d'électroneutralité
 - + Anions = cations
 - → AG = anions non mesurés cations non mesurés
 - → Valeur normale: 8 (5 11) mEq/L
 - + Hypoalbuminémie
 - $+AG_{corrigé} = 8 (2.5 mEq/L / 10 g/L)$

Exemple

- **→** pH 7,23
- + P_{CO2} 22
- + HCO₃- 9
- → Na⁺ 140
- + Cl- 106
- → AG = [Na⁺] ([HCO₃⁻]
 + [Cl⁻])
- **→** AG = 25

Exemple #1

→pH 7,38

P_{CO2} 39

Bic 22

Na⁺ 142

Cl- 95

$$+AG = 142 - (22 + 95)$$

$$+AG = 25$$

→ Donc, acidose métabolique et alcalose métabolique

Acidose métabolique diagnostique

- Inadéquation rénale
 - → ↓ production NH₄⁺
 - + Insuffisance rénale
 - → Hypoaldostéronisme
 - + ↓ sécrétion H⁺
 - → Acidose tubulaire type I
- → Perte HCO3-
 - + Pertes GI
 - + Diarrhée
 - Fistules pancréatiques, biliaires, intestinales
 - + Cholestyramine
 - + Pertes rénales
 - → Acidose tubulaire type II

- → Ajout H⁺
 - → Méthanol
 - + Urémie
 - → DKA → Acidocétose (diabétique, alcool, jeûne)
 - → Paraldéhyde / propylène glycol / phenformin (metformin)
 - → Isoniazide / Iron
 - Lactic acidosis
 - ★ Ethylène glycol
 - ◆ Cyanure / CO
 - + Aspirine
 - + Toluène

$\triangle AG / \triangle HCO_3^-$

- $+ \Delta AG = \Delta HCO_3^-$ (?)
 - ⋆ Tampons intracellulaires / osseux
 - → Tamponnent jusqu'à 50% de l'acide ajouté
 - → Donc, $\triangle AG = 1 2 \times \triangle HCO_3^-$ OU
 - $+\Delta AG / \Delta HCO_3^- = 1 2$
 - → Si \triangle AG / \triangle HCO₃- < 1 → acidose métabolique double
 - → Si \triangle AG / \triangle HCO₃- > 2 → acidose et alkalose métabolique

Exemple

+ pH 7,08

 p_{CO2} 33

Na+ 139

Bic 9

Cl- 77

- → Etape #1: type d'anomalie
 - → acidémie → acidose métabolique
- → Etape #2: compensation
 - $+\Delta P_{CO2} = \Delta HCO_3^- \times 1,2 \text{ mm Hg / mEq/L}$
 - $+\Delta P_{CO2} = (24 9) \times 1,2 = 22$
 - + 33 mm Hg > 18 (prévu) → acidose respiratoire

+ pH 7,08

p_{co2} 33 Na⁺ 139 Bic 9

Cl- 77

+ Etape #3: présence d'un trou anionique

$$+ AG = 139 - (77 + 9) = 53$$

- + 53 >= 25 → acidose métabolique à AG augmenté
- + Etape #4: ? désordre métabolique mixte

$$+\Delta AG / \Delta HCO_3^- = (53 - 8) / (24 - 9) = 3$$

- $+\Delta AG / \Delta HCO_3^- > 2 \rightarrow alcalose métabolique$
- + Donc, désordre triple

Traitement acidose métabolique

- Traitements spécifiques
 - → Acidocétose diabétique: insuline
 - + Intoxication méthanol: fomépizole / éthanol
- → Traitement support
 - + Acidémie néfaste??
 - + Quand traiter?
 - +pH < 7,1 7,2
 - + Correction acidémie
 - → NaHCO3
 - + Carbicarb
 - **→** THAM

Conséquence acidémie

- ★ Les protéines fonctionnent de façon optimales à un pH de 7,4
 - + Protéines sont intracellulaires ? relation avec pH sanguin
- + Cardiaque
 - → Diminution de la contractilité
 - → Augmentation activité système sympathique
 - → Diminution de la réactivité aux catécholamines
- → Respiratoire

ATTENTION

- Intubation pt acidose métabolique
 - ◆Exemple acidocétose diabétique (Bic 6)
 - +Si pCO₂ 15 re: hyperventilation, pH 7,22
 - +Si pCO₂ 40 re: intubation, pH 6,80
 - Mortel dans les cas d'intoxications tricycliques

Alcalose respiratoire

- Symptômes
 - → Liés irritabilité SNC / SNP
 - + Altération de l'état de conscience
 - + Paresthésies
 - **→** Crampes
 - + Signe de Trousseau
 - + Syncope
 - **→** Arythmies
- Diagnostique différentiel
- + Traitement
 - + Sac de papier brun

Alcalose respiratoirediagnostique

- Hypoxémie
 - Pathologie pulmonaire (embolie pulmonaire, pneumonie, fibrose interstielle)
 - → Bas débit
 - + Shunt
 - + FiO₂ basse
- + Pathologie pulmonaire
- + latrogène

- Stimulation centre respiratoire
 - Psychogénique / volontaire
 - → Insuffisance hépatique
 - Sepsis
 - Intoxication aspirine
 - Grossesse (progestérone)
 - Neurologique (AVC, tumeurs)
 - Post-acidose métabolique

Acidose respiratoire

- Symptômes
 - → Mal de tête
 - + Vision embrouillée
 - → Anxiété
 - + Astérixis
 - + Delirium
 - + Somnolence
- Diagnostique différentiel
- + Traitement
 - → Ventilation méchanique
 - + NaHCO₃ / THAM

Acidose respiratoire diagnostique

- Inhibition centre respiratoire
 - → Médicamenteux: opiacés
 - Oxygène dans hypercapnie chronique
 - Apnée du sommeil centrale
 - → Syndrome de Pickwick
- Pathologies musculosquelettique
 - Myopathie
 - + Polyneuropathie
 - Kyphoscoliose
 - + Obésité

- Obstruction voies respiratoires
 - + Corps étranger
 - Apnée du sommeil obstructive
 - + Laryngospasme
- + Pathologie pulmonaire
 - + ARDS
 - → Oedème aiguë du poumon
 - + Pneumonie
 - + Asthme
 - + MPOC
- + latrogène

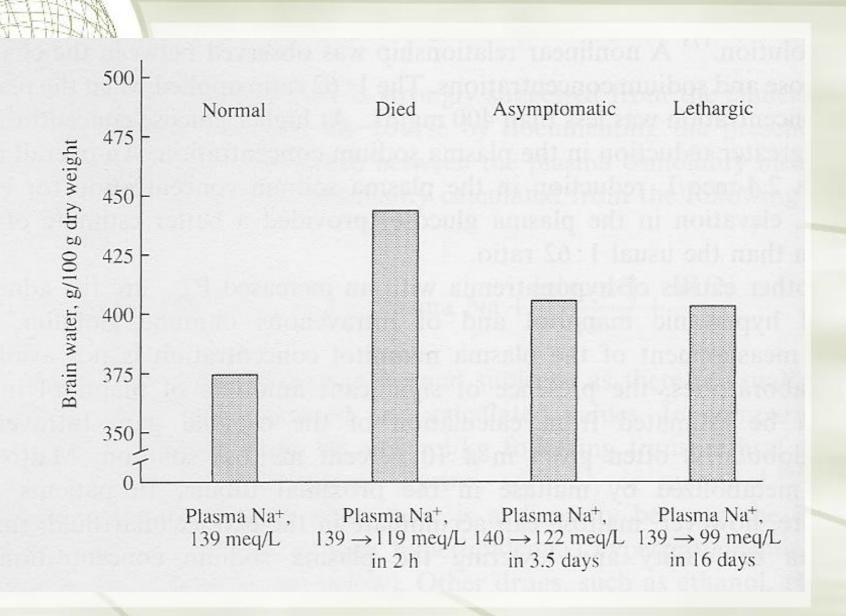
Électrolytes

- **★** Sodium
- **→** Potassium
- + Calcium

Sodium

- ★ Ion essentiellement extracellulaire
- ◆ Régulation du sodium passe par la régulation de l'eau
 - +Excès d'eau → hyponatrémie
 - +Déficit en eau → hypernatrémie
 - +Excès de sodium → oedème
 - → Déficit en sodium → hypovolémie

Hyponatrémie


- **→** Symptômes
- → Diagnostique différentiel
- **→**Traitement

HypoNa⁺ - symptômes

- * Reliés au développement d'oedème cérébral
 - → Degré de l'hyponatrémie

Tableau d'encéphalopathie métabolique

- + 120 125: nausées, malaises
- + 115 120: céphalées, altération de l'état de conscience
- +110 115: convulsion, coma
- + Rapidité du changement
 - + Aigu: 1 2 jours
 - + Chronique

HypoNa+ - diagnostique

- Mesure de l'osmolarité sérique (n: 280 290 mosm/kg)
 - → Hyponatrémie hypoosmolaire: hyponatrémie vraie
 - → Hyponatrémie isoosmolaire: pseudohyponatrémie, glycine
 - → Hyponatrémie hyperosmolaire: hyponatrémie "dilutionelle" secondaire à la présence osmole supplémentaire (hyperglycémie, mannitol, maltose, ...)
 - + Calcul du trou osmolaire
 - $+TO = Osm_{mes} (2 \times [Na+] + [ur\acute{e}] + [glucose])$

HypoNa⁺ - diagnostique

- ★ Mesure de l'osmolarité urinaire
 - → Si basse de façon appropriée (< 100 mosm/kg)</p>
 - → Polydipsie
 - → Réajustement des osmostats (grossesse, malnutrition chronique, quadraplégie)
 - + Si élevée de façon inappropriée (> 100 mosm/kg)
 - → Na⁺_u < 20 mEq/L</p>
 - → Sécrétion appropriée d'ADH reflétant le plus souvent une baisse du volume circulant efficace
 - + Na⁺_u > 20 mEq/L
 - + Sécrétion inappropriée d'ADH
 - + Incapacité du rein de diluer maximalement l'urine

HypoNa⁺ - diagnostique

- Na⁺_u < 20 mEq/L</p>
 - ⋆ Hypovolémie
 - → Pertes gastrointestinales
 - + Pertes cutanées
 - → Post-diurétiques
 - → Hypervolémie
 - → Insuffisance cardiaque
 - + Cirrhose hépatique
 - → Syndrome néphrotique

- Na⁺_u > 20 mEq/L
 - + SIADH
 - + Pneumonie
 - → Néo pulmonaire à petites cellules
 - → Pathologie neuropsychiatrique
 - + Période post-opératoire
 - Insuffisance surrénalienne
 - Diurétiques
 - **→** Thiazides
 - → Diurèse osmotique
 - + Insuffisance rénale

- *Danger de myélinolyse centropontique
- **NE JAMAIS**
 - +Corriger le Na⁺ de plus de 2 mEq/L/h
 - +Augmenter le Na⁺ de > 12 mEq/L/j
 - → Augmenter le Na⁺ à 140 mEq/L durant les
 2 premiers jours de traitement

- ◆ Si symptômes sévères
 - → NaCl 3%
 - → Vitesse de correction
 - + Si hypoNa⁺ aiguë
 - + 1,5 2 mEq/L/h au cours des 3 4 premières heures
 - + 1 mEq/L/h ad atteinte augmentation 12 mEq/L par rapport à la valeur initiale
 - → Si hypoNa+ chronique
 - + 1 mEq/L/h ad atteinte augmentation 12 mEq/L
- → Si asymptomatique
 - → Selon l'étiologie: NaCl 0,9%, restriction hydrique, diurétiques, tablettes de sel, tolvaptan
 - + 12 mEq/L/j maximum

- Aspects pratiques
 - → Dose Na+ = déficit Na+ x volume distribution
 - ◆Le volume de distribution du sodium est l'eau totale
 - $+H_2O$ totale = 0,4 0,6 x poids maigre (kg)
 - +NaCl 3%: 513 mEq/L

- → Femme de 42 ans avec nouveau diagnostique d'hypertension. HCTZ débuté. Se présente 5 jours plus tards avec épisode convulsif. Na⁺ 108 mEq/L.
 - → Quantité Na⁺ = déficit Na⁺ x H₂O totale
 - + Quantité $Na^+ = (1 \text{ mEq/L x 12h}) \times (0.5 \times 60 \text{ kg})$
 - + Quantité Na⁺ = 360 mEq
 - → Quantité NaCl 3% = 360 mEq x 1000 mL / 513 mEq
 - → Quantité NaCl 3% = 700 mL
 - → Vitesse de perfusion = 700 mL / 12 h
 - → Vitesse de perfusion = 60 cc/h

Hypernatrémie

- **→** Symptômes
- → Diagnostique différentiel
- **→**Traitement

HyperNa⁺ - symptômes

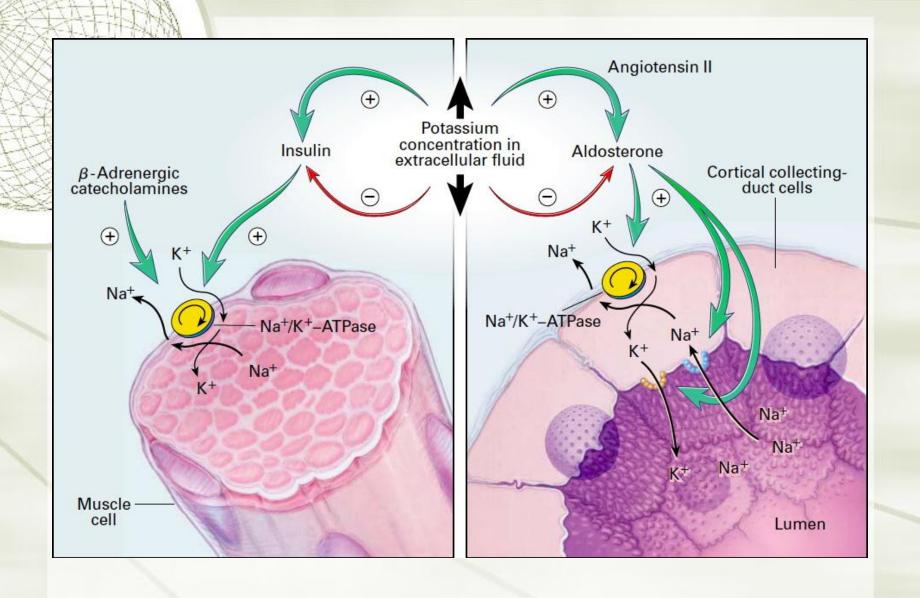
- + Similaire à l'hyponatrémie
 - → Degré de l'hypernatrémie
 - +Faiblesse, altération de l'état de conscience
 - +Convulsion, coma
 - → Hémorragie intracrânienne
 - +Rapidité du changement

HyperNa+ - diagnostique

- ◆ Perte d'eau
 - + Pertes cutanées
 - Diarrhées osmotiques
 - + Translocation
 - + Pertes rénales
 - Diabète insipide néphrogénique/ central
 - + Diurèse osmotique
 - Dysfonction hypothalamique
 - → Hypodipsie
 - → Réajustement des osmostats (hyperaldostéronisme primaire)

- → Ajout de sel
 - → latrogène
 - → NaCl 3%
 - → NaHCO₃
 - + Ingestion NaCl

- Danger d'oedème cérébral
- → Si hypovolémie associée
 - + NaCl 0,25%


Sinon

- + D₅W
- → La vitesse de correction ne doit pas dépasser 0,5 mEq/L/h
- → Quantité H2O = H2O totale x (([Na+] / 140) 1)

- → Homme de 19 ans avec adénome pituitaire comprimant neurohypophyse. Na⁺ 180
 - → Quantité H₂O = H2O totale x (([Na+] / 140) 1)
 - + Quantité $H_2O = 0.5 \times 80 \text{ kg} \times ((180/140) 1)$
 - + Quantité H₂O = 11,4 L
 - → Vitesse de perfusion = 11,4 L / (Δ [Na⁺] / 0,5 mEq/L/h)
 - → Vitesse de perfusion = 11,4L / (40 mEql/L / 0,5 mEq/L/h)
 - → Vitesse de perfusion = 143 cc/h

Potassium

- + Ion à prédominance intracellulaire
 - +98% des 4000 mmol
- + Mécanismes de régulation
 - → Translocation intracellulaire
 - →Tractus gastrointestinal
 - +Régulation rénale

Hypokaliémie

- **→** Symptômes
- → Diagnostique différentiel
- **→**Traitement

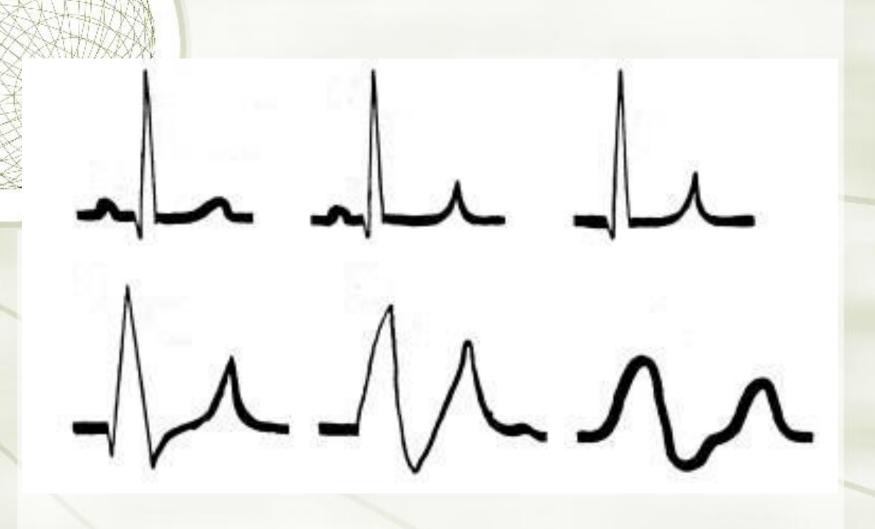
HypoK⁺ - symptômes

- Selon degré d'hypokaliémie
 - → Musculaire
 - + Faiblesse membres inférieurs
 - → Arrêt respiratoire
 - + Iléus
 - + Cardiaque
 - + Dépression ST
 - → Baisse amplitude onde T
 - +Onde U
 - → Irritabilité / bloc AV
 - → Rhabdomyolyse
 - + Dysfonction rénale
 - → Diabète insipide néphrogénique

HypoK+ - diagnostique

- Diminution apports
- Translocation
 - → Alcalose métabolique
 - + Insuline
 - + β-agonistes
 - + Asthme
 - → Tocolyse
 - Paralysie périodique hypokaliémique
 - → Erythropoïèse
 - Hypothermie
 - + Intoxication
 - **→** Barium
 - + Chloroquine

- + Pertes rénales
 - Diurétiques
 - + Hypomagnésémie
 - → Amphotéricine B
 - + Excès minéralocorticoïdes
 - → Néphropathies "salt-losing"
- Pertes gastrointestinales
 - → Vomissement / TNG
 - Diarrhée
- Pertes cutanées
 - + FKP
 - Tropiques
- + Dialyse / plasmaphérèse


- Vérifier magnésium
 - + MgSO₄ 5g / 250 cc NS sur 5h
- → Si K⁺ < 3 mEq/L, déficit de 200 400 mEq présent
 - + Si K+ > 3
 - + KCl 10 20 mEq PO BID QID
 - + Si K+ < 3
 - → KCl 40 60 mEq PO TID QID
 - + Si symptômes sévères
 - ★ KCl 20 mEq / 100 cc NS sur 1h ad résolution des symptômes

Hyperkaliémie

- **→** Symptômes
- → Diagnostique
- **→**Traitement

HyperK+ - symptômes

- ◆ Selon degré d'hyperkaliémie
 - → Musculaire
 - + Faiblesse membres inférieurs
 - → Paralysie flasque
 - + Cardiaque
 - + Bloc AV 1er degré
 - → Ondes P petites ou absentes
 - → Ondes T proéminentes
 - + Élargissement QRS
 - → Dépression ST +/- fusion avec onde T
 - → Tachycardie ventriculaire
 - → Bradycardie
 - + Arrêt

HyperK+ - diagnostique

- Translocation
 - Pseudohyperkaliémie
 - Acidose métabolique
 - → Déficience en insuline
 - + Hyperosmolarité
 - → Catabolisme cellulaire
 - + Lyse tumorale
 - → Rhabdomyolyse
 - + Exercice
 - Paralysie périodique hyperkaliémique
 - + Succinylcholine
 - → Digoxine

- Rétention rénale
 - → Hypoaldostéronisme
 - → ↓ rénine/aldostérone
 - + IECA, AINS, CsA
 - Néphropathie diabétique
 - + Primaire
 - → Antagoniste
 - + Spironolactone
 - → Insuffisance rénale
 - → Baisse volume circulant efficace
 - Acidose tubulaire type I

- Si manifestations cardiaques sévères
 - ★ CaCl₂ 10%, 10 mL sur 2 3 minutes
 - + CaGluconate 10%, 10 mL sur 2 3 minutes
- → Cesser les apports
- + Favoriser translocation intracellulaire
 - **→** Insuline
 - → Humulin R 10u avec D₅₀W 50 mL sur 15 minutes
 - → Début d'action 15 min, pic 60 min, durée quelques heures
 - + Baisse K⁺ de 0,5 1,5 mEq/L

HyperK+ - traitement

- ◆ NaHCO₃
 - → NaHCO3 50 mEq sur 5 minutes
 - → Début d'action 15 30 min, durée quelques heures
 - → Baisse K⁺ de 0,5 mEq/L
- $+\beta$ -agonistes
 - → Salbutamol 5 mg nébulizé
 - + Début d'action 30 min
 - → Baisse K⁺ de 0,5 1,5 mEq/L
- → Favoriser pertes gastrointestinales
 - → Kayexalate
 - → Kayexalate 15 30g dans sorbitol PO
 - → Kayexalate 50g dans l'eau PR (retenir 2 4h)
 - → Début d'action 1 3 h, pic 6 heures

HyperK+ - traitement

- Favoriser pertes rénales
 - +Lasix
- + Dialyse

Calcium

- +99% complexé dans les os
- + Au niveau sanguin, lié à l'albumine
 - +Forme active est la forme libre (ionisée)
 - +Ca⁺⁺_(t, calc) = [Ca⁺⁺] + 0,02 x (40 [albumine])

HypoCa⁺⁺ - symptômes

- + Selon degré d'hypocalcémie
 - ⋆ Liés à l'irritabilité neuromusculaire
 - + Paresthésies
 - + Crampes musculaires
 - + Laryngospasme
 - + Convulsions
 - + Cardiovasculaire
 - + Hypotension
 - → Insuffisance cardiaque
 - → Psychiatrique
 - + Altération état de conscience, anxiété, psychose

HypoCa⁺⁺ - diagnostique

- ★ Hypoparathyroïdisme
 - + Chirurgie
 - + Autoimmunitaire
- → Déficience en vitamine D
- + Calcifications extravasculaires
 - + Hyperphosphatémie
 - + Pancréatite aiguë
- Hypomagnésémie
- → Transfusion massive
- → Biphosphonates

- Traitement intraveineux si hypocalcémie symptomatique ou si niveau < 1,9 mmol/L</p>
 - +CaCl₂ ou CaGluconate 10% 10 mL sur 10 min
 - +CaGluconate 100 mL / 1000 cc D₅W à 50 cc/h

HyperCa⁺⁺ - symptômes

- Hypercalcémie
 - +Légère: 2,6 3 mmol/L
 - + Modérée: 3 3,5 mmol/L
 - + Sévère: > 3,5 mmol/L
- Symptômes
 - → Neurologiques
 - + Altération état de conscience, anxiété, dépression
 - → Musculosquelettiques
 - + Faiblesse, douleurs osseuses
 - + Gastrointestinaux
 - → Nausées/vomissement, constipation
 - + Rénaux
 - + Lithiase, diabète insipide néphrogénique

HyperCa⁺⁺ - diagnostique

- Hyperparathyroïdisme
- → Néoplasie
- + Thiazide
- → Maladie granulomateuse
- + Insuffisance rénale
- + Intoxication
 - → Vitamine D
 - → Syndrome lait et alcalins

- Pamidronate 90 mg dans 500 mL sur 4h
- → Réplétion volémique
- + Diurétiques de l'anse
 - +Lorsque patient euvolémique
- + Calcitonine
- → Dialyse

