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Abstract 

Every year, 1 million to 1.25 million patients worldwide undergo cardiac 

surgery. [1] Up to 36,000 cardiac surgeries are performed each year in Canada and close to 

8000 in Quebec (http://www.ccs.ca). Because of the aging of the population, cardiac 

surgery will increasingly be offered to patients at a higher risk of complications. Indeed, 

elderly patients have increased co-morbidities, and aging is also a significant risk factor in 

the prevalence of coronary artery disease. [2] The consequence is a reduced physiologic 

reserve, hence an increased risk of mortality. These issues will have a significant impact on 

future healthcare costs, because our population undergoing cardiac surgery will be older 

and more likely to develop postoperative complications. One of the most dreaded 

complications in cardiac surgery is difficult separation from cardiopulmonary bypass 

(CPB). The definition of difficult separation from CPB includes the time period from when 

CPB is initiated and until the patient leaves the operating room. When separation from CPB 

is associated with right ventricular failure, the mortality rate will range from 44% to 

86%. [3-7] Therefore the diagnosis, the preoperative prediction, the mechanism, prevention 

and treatment of difficult separation from CPB will be crucial in order to improve the 

selection and care of patients and to prevent complications for this high-risk patient 

population. The hypotheses of this thesis are the following: 1) difficult separation from 

CPB is an independent factor of morbidity and mortality, 2) the mechanism of difficult 

separation from CPB can be understood through a systematic approach, 3) inhaled 

milrinone is a preventive and therapeutic approach in the patient at risk for difficult 

weaning from CPB after cardiac surgery. 

 

Keywords : Right ventricle; Cardiopulmonary bypass; Cardiac surgery; Hemodynamic 

instability; Transesophageal echocardiography; Pulmonary hypertension. 

 



 

Chapter 3 Mechanisms of difficult separation from 

cardiopulmonary bypass 
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As we have previously observed, difficult separation from CPB is an important and 

independent cause of morbidity and mortality. Therefore, it is of crucial importance to 

understand that mechanism precisely in order to initiate appropriate treatment. Difficult 

separation from CPB will result in a reduction in cardiac output, which will in turn result in 

hemodynamic instability. In order to describe this mechanism, the use of the concept of 

venous return as described by Guyton, [54] combined with that of biventricular pressure-

volume relationship, can help us understand this critical condition. The use of TEE has 

allowed us to document the various causes of hemodynamic instability, and examples from 

the MHI TEE database (n = 15,000 exams) will be used to illustrate this concept.  

3.1 Mechanism of hemodynamic instability 

The various components of hemodynamic instability can be explained using the 

classical concept of venous return as described by Guyton. [54] In simple terms, venous 

return (VR) is determined by a pressure gradient. This gradient corresponds to the 

difference between the mean systemic venous pressure (Pms) in the periphery and the right 

atrial pressure (Pra). This pressure gradient difference is divided by the resistance to venous 

return (Rvr).  

 

  (Equation 1) 

Therefore venous return and, consequently, cardiac output, will be reduced if: 1) the 

right atrial pressure is elevated, 2) the mean systemic pressure is low, and/or 3) the 

resistance to venous return is increased. There are several ways to illustrate this 

relationship. The classical approach to describe venous return and cardiac output is 

illustrated in Figure 13. [156] 
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Figure 13 Venous return and cardiac output 

The venous return and cardiac output (y axis) and its relation with right atrial pressure (x 

axis) is shown. The intersection of both curves will correspond to the right atrial pressure 

(Pra) at which, in a steady state, an individual will have an unique venous return and 

cardiac output. The mean systemic pressure (Pms) corresponds to the point where the 

venous return = 0. The venous return curve is linked to the resistance to venous return (Rvr) 

(dotted lines) (Adapted from Jacobsohn [156]).  

 

The pressure-volume relationship is used to describe a single cardiac cycle (Figure 

14).  
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Figure 14 Pressure and volume during a cardiac cycle 

(A) Changes in aortic, atrial, ventricular pressure, and ventricular volume in relation to the 

electrocardiogram. Left ventricular (LV) pressure and volume over time during a cardiac 

cycle is characterized by seven time-related events. Isovolumic contraction [1] is followed 

by early [2] and late [3] ejection. Diastole starts with isovolumic relaxation, [4] followed by 

the early filling phase after the opening of the mitral valve, [5] diastasis, [6] and atrial 

contraction. [7] (B) Corresponding LV pressure-volume relationship during one cardiac 

cycle (With permission of Denault et al. [12]).  

 

The pressure-volume relationship is typically described for the left ventricle but has 

also been used to evaluate right ventricular function. [157] The major difference between 

both ventricles is the reduced pressure in the right compared to the left ventricle. [48] In 

order to integrate the pressure-volume relationship to the venous return concept, we used a 

simplified alternative approach illustrated in Figure 15. 
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The combination of conventional hemodynamic monitoring and TEE allows the 

determination of the causes of hemodynamic instability. [44] However, so far, a systematic 

approach in the diagnosis of difficult separation from CPB using conventional 

hemodynamic and TEE has not been performed in cardiac surgery. This combined 

approach can be used to determine the causes of difficult separation from CPB. The causes 

of hemodynamic instability resulting in reduced venous return or cardiac output and leading 

to difficult separation from CPB are a reduction in Pms, an increase in Pra and an increase 

in Rvr (Table 11).  

Table 11 Mechanism of hemodynamic instability in cardiac surgery 

1) Reduction in mean systemic pressure: 

Reduction in stressed volume:  

Hemorrhagic shock:  

External hemorrhage 

Internal: hemothorax, peritoneal hemorrhage, retroperitoneal 

hemorrrhage, gastrointestinal hemorrhage 

Increased in compliance 

Sepsis and overwhelming shock [137] 

Drug-induced vasodilation 

Anaphylaxis 

Vasoplegic syndrome 

Adrenal insufficiency 

2) Increased right atrial pressure 

Left and right ventricular systolic dysfunction 

Left and right ventricular diastolic dysfunction 

Left and right outflow tract obstruction 

Left and right embolism 

Aortic and mitral patient-prosthesis mismatch  

Hypoxemia and hypercapnia 

Pulmonary reperfusion syndrome  

 3) Increased resistance to venous return 

Compartment syndrome 

Pericardial tamponade 

Mediastinal: post cardiopulmonary bypass  

Pleural: hemothorax and pneumothorax  

Abdominal: intrinsic, extrinsic or parietal  

Vena cava syndrome   

Inferior 

Superior  
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3.1.1 Reduction in mean systemic pressure 

The mean systemic pressure, or Pms, will depend on the amount of blood 

contributing to maintain a specific venous pressure. [156] This can be expressed by the 

following equation: 

  (Equation 2) 

 

where V is the total volume of the venous reservoir and  the unstressed volume. The 

difference between V and V0 is equal to the stressed volume. Consequently, a reduction in 

Pms will be caused by a loss of stressed volume, such as hemorrhagic shock, or an increase 

in compliance of the venous reservoir, such as can be the case following drug-induced 

vasodilation. Reduction of Pms results in a reduction in venous return and cardiac output 

from a parallel medial shift of the venous return curve. Pressure and volume of both 

ventricles will be reduced (Figure 16).  
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Figure 16 Reduction in mean systemic venous pressure 

Reduction in mean systemic venous pressure will result in a medial shift of the venous 

return curve. In such a situation, pressure and volume of the right and left ventricles will be 

reduced. This diagnosis can be made with conventional hemodynamic monitoring alone. In 

such a situation, filling pressure, venous return and cardiac output will be reduced. There 

are two basic mechanisms: a reduction in the stressed volume and an increase in venous 

compliance. Both conditions will be associated with a reduction in both left- and right-sided 

cardiac dimensions; however, some specific echocardiographic findings can suggest rather 

one mechanism or the other. 
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3.1.1.1 Reduction in stressed volume 

During cardiac surgery, hemorrhagic shock is a common mechanism of reduced 

Pms that occurs because of a loss of blood volume and, consequently, hemoglobin. 

Hemorrhagic shock can be defined as internal or external. The latter is easy to diagnose; the 

former can however prove more difficult to recognize. There are two conditions of internal 

blood losses that can be diagnosed during cardiac surgery. The first is massive pleural 

effusion secondary to a hemothorax. We have encountered this condition following 

traumatic perforation of the superior vena cava during the insertion of a central venous 

catheter. The diagnosis can easily be made using TEE, as both right and left pleural cavity 

can be seen using TEE). The mechanism of hemodynamic instability of a hemothorax can 

also result from an increase in the resistance to venous return, as will be discussed later. In 

such a situation, right atrial pressure might not be reduced, as the hemothorax can 

externally compress the right atrium. 

 

Figure 17 Bilateral pleural effusions 
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(A, B) The left pleural effusion is typically posterior to the descending aorta (Ao) and seen 

on the right side of the screen. (C,D) The right pleural effusion is on the left side of the 

screen where part of the liver can be seen. A total of 2500 mL of pleural fluid was removed 

from the right (900 mL) and left pleural (1400 mL) cavities (With permission of Denault et 

al. [13]).  

 

Another cause of hemodynamic instability easily diagnosed in the operating room is 

peritoneal hemorrhage. This can result from abdominal aortic or iliac rupture, which can 

occur during manipulation of these structures. This situation has been encountered during 

the emergency insertion of an IABP. The diagnosis is based on the new onset of fluid 

collection in the abdomen. The echocardiographic image is similar to that of ascitis (Figure 

18). 

 

 

Figure 18 Abdominal examination using transesophageal echocardiography 

(A,B) Presence of ascitis in a 58-year-old woman. (IVC, inferior vena cava, LHV, left 

hepatic vein) (Courtesy of Denault et al. [13]). 

 

Other sites of bleeding include the gastrointestinal tract and the retroperitoneal 

space. Such a diagnosis would require other modalities, such as gastrointestinal endoscopy 

and computed tomography.  
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3.1.1.2 Increase in venous compliance 

The second mechanism involved in a reduction in Pms is an increased compliance 

of the vascular system. This diagnosis can also be suggested by some specific 

echocardiographic signs evocative of an infectious process, for instance. Increased venous 

compliance can develop following the use of several drugs during cardiac surgery, during 

the vasoplegic syndrome and, in some cases, sepsis. [137]  

The use of preoperative angiotensin-converting enzyme inhibitors has been 

associated with vasodilatory shock in cardiac surgery. [159] In such a case, vasopressin has 

been proposed as a drug of choice. [160;161] Drug-induced vasodilation can occur shortly 

following the induction of anesthesia and is often rapidly reversible. Anaphylactic reaction 

can also occur, particularly during the administration of blood products, aprotinin and 

protamine, and in patients previously exposed to these agents. Adrenaline or even 

vasopressin can be used in such a situation. [162] Similarly, the administration of 

protamine can be associated with acute pulmonary hypertension combined with right 

ventricular failure. [163] In these situations heparine, methylene blue [163] or inhaled 

prostacyclin [164] have been used to manage unstable patients. Patients exposed to or under 

corticosteroids can also present a predisposition to adrenal insufficiency, another cause of 

increased venous compliance. [165]  

The term “vasoplegic syndrome” has been used to describe a severe systemic 

inflammatory response syndrome occurring after CPB [166] and, in rare instances, in 

patients without CPB. [136] Vasoplegic syndrome is defined as a mean arterial pressure 

< 60 mmHg, a cardiac output greater than 4.0 L/min, and low systemic vascular resistance 

(600 dyne/s/cm
5
) under an intravenous norepinephrine infusion (0.5 μg/kg/min) . [167] 

This condition can occur in up to 5% of patients undergoing cardiac surgery and is 

associated with an increased morbidity and mortality going up to 5.6%. Treatment with 

methylene blue has been shown to be effective in 94% of cases. [167] The mechanism of 

the vasoplegic syndrome is thought to be related to surgical trauma, contact of blood 

                                                 
 This is equivalent to 130 mL/hr of norepinephrine (4 mg/250 mL) for a 70 kg patient. 
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components with the artificial CPB circuit and lung reperfusion injury. [168] This effect 

will trigger a cytokine-mediated activation of platelets and leukocytes. Both tumor necrosis 

factor α (TNF-α) and interleukin-6 levels are related to the degree of surgical stress. [169] 

A high level of TNF-α will promote the secretion of nitric oxide (NO) and platelet-

activating factor (PAF). The release of NO will reduce systemic vascular resistance and 

increase compliance; PAF is partially responsible for the increased permeability in sepsis 

and shock. [170] 

Finally, emergency operation in patients already hemodynamically unstable on 

vasoactive medication is a well-known risk factor for LCOS [75;78] and mortality. [141] 

These patients may already show an increase in venous compliance from sepsis. Active 

endocarditis for instance, with the associated sepsis, is an important predictor of outcome in 

the Parsonnet score [100] and EuroSCORE. [101;141] In such conditions, the requirement 

for vasoactive medication can be the result not only of an increased venous compliance but 

is also often associated with other mechanisms.  

 

3.1.2 Increased right atrial pressure 

Increased right atrial pressure can result from left and right systolic dysfunction, 

diastolic dysfunction, outflow tract obstruction and embolism. In addition, certain 

biochemical conditions can increase pulmonary vascular resistance, such as hypoxemia, 

hypercapnia and the pulmonary reperfusion syndrome (see Chapter 6). Aortic and mitral 

patient-prosthesis mismatch are other factors that can contribute to an increase in right 

atrial pressure. These conditions, along with their definitions, mechanisms and 

echocardiographic signs, will be reviewed. 

3.1.2.1 Left ventricular systolic dysfunction 

One of the most common causes of elevated right atrial pressure is left ventricular 

systolic dysfunction. During cardiac surgery, left ventricular systolic dysfunction can result 

from ischemia, poor protection during CPB and air embolism. In a situation where systolic 
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dysfunction appears either to the left or the right, a right-sided (or lateral) shift of the 

pressure-volume relationship will be observed. Biventricular volumes will be increased, 

while ventricular pressure is typically normal or high (Figure 19).  

 

 

Figure 19 Biventricular systolic dysfunction 
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Biventricular systolic dysfunction will be associated with a reduction in venous return and 

cardiac output. The right atrial pressure will increase. In that situation, the pressure and 

volume of the right and left ventricles will shift laterally.  

 

Echocardiographically, signs of left ventricular dysfunction include a reduced left 

ventricular ejection fraction measured either using a mid-esophageal view (Figure 20) or 

transgastric view (Figure 21).  

 

Figure 20 Simpson‟s method of discs 

Measurement of left ventricular volumes by modified Simpson‟s biplane method using 

mid-esophageal four- (A,B) and two-chamber (C,D) views. The calculated 

echocardiographic stroke volume (SV) was slightly different from the SV measured with 

thermodilution (TD) (EDV, end diastolic volume; EF, ejection fraction; ESV, end systolic 

volume). (With permission of Denault et al. [13]) 
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Figure 21 Left ventricular fractional area change 

Measurement of fractional area change (FAC) in a 75-year-old man with unstable angina 

undergoing emergency revascularization. A transgastric mid-papillary view of the left 

ventricle (LV) in diastole (A,B) and in systole (C,D) provides the measurements to 

calculate the FAC, which was 26%. Note the exclusion of the papillary muscles during 

tracing of the areas. (EDA, end diastolic area; ESA, end systolic area). (With permission of 

Denault et al. [12]) 

 

Left ventricular systolic dysfunction originating from either coronary artery disease, 

cardiomyopathy, or associated with valvular heart disease, will be associated with an 

elevated left ventricular filling pressure and, consequently, post-capillary pulmonary 

hypertension. In cardiac surgery, left ventricular systolic dysfunction can be present before 

or after the procedure. 

When present before the procedure, left ventricular systolic dysfunction, defined as 

reduced LVEF or associated with regional wall motion abnormalities (RWMA), is a known 

predictor of perioperative mortality in cardiac surgery. [73] This observation was well 

described in the Coronary Artery Surgery Study (CASS) in 1983. [171] This study 
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analyzed 7658 patients who underwent isolated coronary revascularization, irrespective of 

age, and examined whether an age of 65 years or older was an independent predictor of 

perioperative mortality. The variables selected, in order of significance, were: congestive 

cardiac failure score; left main coronary artery stenosis and a left-dominant circulation; age 

of 65 years or older; left ventricular wall motion score; gender; and history of unstable 

angina pectoris. [171] When left ventricular dysfunction before cardiac surgery is 

associated with mortality, the mechanism involved is most likely hemodynamic instability. 

Indeed, in a smaller study of 128 patients undergoing coronary revascularization, Royster et 

al., [58] using logistic regression analysis, observed that LVEF was significantly lower and 

the most significant factor (p = 0.0022) associated with the requirements for inotropes after 

cardiac surgery. 

Left ventricular dysfunction can occur after cardiac surgery and will be associated 

with a worse outcome. Leung et al. [172] found that postoperative RWMA, as 

demonstrated by TEE, was the most reliable predictor of operative outcome. Six of 18 

patients with postoperative RWMA had an adverse outcome, defined as myocardial 

infarction, severe left ventricular dysfunction requiring inotropic therapy, or cardiac death, 

whereas none of the 32 patients without postoperative RWMA showed any adverse 

outcome. 

In summary, reduced left ventricular dysfunction is associated with worse outcome 

after cardiac surgery when it is present before or after the procedure. Post-capillary 

pulmonary hypertension is the consequence of left ventricular dysfunction; however, an 

elevation of LVEDP will appear before elevated left atrial pressures reach the pulmonary 

circulation. In addition, elevated LVEDP can be present without reduced left ventricular 

systolic function. This condition is named left ventricular diastolic dysfunction.  

3.1.2.2 Left ventricular diastolic dysfunction 

Diastolic dysfunction is evaluated and diagnosed by an accepted classification and 

recommended guidelines (Figure 22). [173;174] These guidelines are based on Doppler 

signals obtained at the mitral valve leaflet, namely the transmitral flow (TMF) early (E) and 
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atrial (A) velocities, the pulmonary venous flow (PVF) systolic (S) and diastolic (D) 

velocities and the myocardial wall velocities measured at the mitral annulus, so-called the 

mitral annular velocities (MAV). The latter are composed of Em (early component of the 

MAV) and Am (late or atrial component of the MAV). In patients undergoing cardiac 

surgery, we have used the following criteria to define diastolic function: normal (TMF E/A 

>1, PVF S/D >1, MAV Em/Am >1), mild diastolic dysfunction (E/A < 1, S/D >1, MAV 

Em/Am <1), moderate diastolic dysfunction (E/A ≥ 1, S/D <1, MAV Em/Am <1), and 

severe diastolic dysfunction (E/A >2, S/D <1, MAV Em/Am < or >1).  

 

Figure 22 Echocardiographic classification of diastolic dysfunction 
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(A, peak late diastolic transmitral flow velocity; A dur, duration of mitral inflow A-wave; 

AR dur, peak pulmonary venous atrial reversal flow velocity duration; D, peak diastolic 

pulmonary venous flow velocity; DT, deceleration time; E, peak early diastolic transmitral 

flow velocity; Em, peak early diastolic myocardial velocity; LV, left ventricular; S, peak 

systolic pulmonary venous flow velocity; Vp, flow propagation velocity). (With permission 

of Denault et al. [12]). 

 

Diastolic dysfunction of both the left and right ventricles will be associated with a 

normal or reduced volume requiring an increased filling pressure (Figure 23).  
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Figure 23 Biventricular diastolic dysfunction 

Biventricular diastolic dysfunction will be associated with a maintained venous return and 

cardiac output. However, the right atrial pressure will increase from a parallel rightward 

shift of the venous return curve. In that situation, the filling pressure will increase and 

ventricular volume can be normal or reduced.  
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The recognition that left ventricular diastolic dysfunction plays a central role in the 

pathophysiology of cardiac disease has been compared to the discovery of the Rosetta 

Stone, which played a key role in understanding 1000 years of Egyptian history. [175] This 

new understanding was triggered by developments in echocardiography that allowed for a 

simple, rapid and non-invasive assessment of cardiac function. However, before 

echocardiography was routinely used in cardiology, several clinicians observed that 

elevated LVEDP per se was associated with mortality. In 1983, in the CASS study, Gersh 

et al. [171] reported their results on 1086 patients of 65 years of age or older who 

underwent isolated coronary artery bypass grafting. Using a stepwise linear discriminant 

analysis, the authors identified five variables predictive of perioperative mortality. The first 

was the presence of 70% or more stenosis of the left main coronary artery and a left-

dominant circulation, and the second most important factor was LVEDP.  

There is a growing interest in the evaluation of diastolic dysfunction. Diastolic 

dysfunction is associated with reduced survival in patients with congestive heart 

failure, [176;177;177-179] sepsis [180] and following acute myocardial 

infarction. [181;182] This is consistent with the observation that preoperative elevated 

LVEDP increases the incidence of postoperative inotropic support [58;104] and 

mortality. [8;11;183] It also supports the hypothesis that diastolic dysfunction before 

cardiac surgery could have an impact on survival and postoperative 

complications. [17;39;155;184;185]  

The hypothesis that patients with diastolic dysfunction are at higher risk of 

hemodynamic instability after cardiac surgery is supported by a study by Bernard et al. [17] 

that included 66 patients, of whom 52 underwent coronary revascularization alone. The 

factors associated with an increased need for vasoactive support after CPB were: female 

gender, diastolic dysfunction and prolonged duration of CPB. Diastolic dysfunction was 

more significant than systolic dysfunction in predicting difficult separation from CPB and 

vasoactive requirement after surgery. The importance of preoperative diastolic dysfunction 

as an independent predictor of hemodynamic complications and survival in cardiac surgery 

was reconfirmed by four other investigations. [39;155;184;185] 
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In summary, diastolic dysfunction will predispose to hemodynamic instability 

because the impairment of the left ventricle to accommodate volume and the consequent 

elevated LVEDP can predispose to pulmonary edema, pulmonary hypertension and right 

ventricular dysfunction. Finally, when hemodynamic instability occurs after cardiac 

surgery, it is almost invariably associated with filling abnormalities. [19] 

3.1.2.3 Right ventricular systolic dysfunction 

There are several ways to evaluate right ventricular function, and these methods 

were reviewed by Haddad et al. [48] Right ventricular function is commonly measured with 

2D or Doppler echocardiography following published guidelines. [186] Right ventricular 

fractional area change (normal  35%) (Figure 24), right ventricular myocardial 

performance index (Figure 25) and tricuspid annular plane systolic excursion (Figure 

26) [44] can be obtained to evaluate right ventricular function. The right ventricular 

myocardial performance index is stratified as < or ≥ 50%, as previously 

described. [187;188]  
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Figure 24 Right ventricular systolic and diastolic function 

A 65-year-old man with previous inferior myocardial infarction scheduled for coronary 

revascularization. (A–C) Before cardiopulmonary bypass (CPB) the ejection fraction of the 

left ventricle (LV) is 20% with a low cardiac index of 1.5 L/min per m². (A) Pulsed wave 

Doppler hepatic venous flow (HVF) shows systolic flow (S) predominance. (B) Tricuspid 

annular velocities (TAV) by tissue Doppler shows a Et/At ratio < 1 (Et = 5.7 and At = 11.5 

cm/sec). Both suggest mild diastolic dysfunction of the RV. (C) The fractional area change 

(FAC) of the RV is 34%. (D–F) Post-CPB. (D) The HVF showed new blunting of the 

systolic flow. (E) The TAV are increased with a similar ratio (Et = 7.1 and At = 12.1 

cm/sec). This suggests decreased RV compliance. (F) Right ventricular FAC increased to 

48% consistent with the surgeon‟s visual appreciation of improved right ventricular 

function. Upon arrival to the intensive care unit, the cardiac index was 3.0 L/min per m² 

(AR, atrial reversal; EDA, end-diastolic area; ESA, end-systolic area; LA, left atrium; RA, 

right atrium). (With permission of Denault et al. [12]) 

 



120 

 

 

Figure 25 Myocardial performance index (MPI) 

Measurement of MPI or Tei index. (1) For the MPI of the left ventricle (LV), the 

transmitral inflow is used for measurement of the duration “a” from the end of atrial 

contraction (A-wave) to the beginning of LV filling (E-wave). (2) The ejection time (ET) or 

“b” is measured from a deep transgastric long-axis view Doppler interrogation of the left 

ventricular outflow tract. The MPI of the right ventricle (RV) is similarly obtained using 

the transtricuspid flow and the mid-esophageal ascending aorta short-axis view for the right 

ventricular outflow tract (IVCT, isovolumic contraction time; IVRT, isovolumic relaxation 

time). (With permission of Denault et al. [12]) 
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Figure 26 Tricuspid annular plane systolic excursion (TAPSE) 

Steps in the measurement of the TAPSE measured using anatomic M-mode. First a four-

chamber view is obtained (A-B). Then the M-mode cursor is positioned along the plane of 

the TAPSE motion (C). An M-mode figure of this excursion or displacement is obtained 

(D). The lower point corresponds to the maximal systolic excursion and the upper point is 

the atrial contraction. The TAPSE is equal to the total systolic excursion of the tricuspid 

annulus (E). Normal TAPSE should be 20-25 mm. (With permission of Denault et al. [12])  
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Right ventricular systolic dysfunction can be associated or not with left ventricular 

systolic dysfunction. The mechanism of biventricular systolic dysfunction was illustrated in 

Figure 27 However, isolated right ventricular systolic dysfunction can lead to left 

ventricular diastolic dysfunction and left ventricular outflow tract obstruction (Figure 27). 

In severe cases, this can lead to the opening of a patent foramen ovale and worsening 

hypoxemia. Hypoxemia will further increase pulmonary hypertension and thus lead to a 

deterioration of the right ventricular function if the cycle is uninterrupted. 

There is growing evidence that morbidity and mortality associated with pulmonary 

hypertension (discussed in more detail in Chapter 6) are dependent on right ventricular 

adaptation to disease rather than on the absolute value of pulmonary arterial 

pressure. [46;189-191] Survival and outcome in idiopathic pulmonary arterial hypertension 

are more related to elevated mean right atrial pressure and reduced cardiac output than to 

pulmonary arterial pressure values alone. [189;192]  
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Figure 27 Isolated right ventricular systolic dysfunction 

Isolated right ventricular systolic dysfunction (A) can alter the geometry of the left 

ventricle via the common pericardium and the interventricular septum through 2 

mechanisms. The most frequent is a filling abnormality (B). This is associated with a 

reduction in left ventricular volume and an increase in left ventricular pressure. The second 

mechanism can appear in very severe right ventricular dysfunction. This will also be 

associated with a reduction in left ventricular volume, an increase in left ventricular 

pressure but also left ventricular outflow tract obstruction (C). In the latter situation, the use 

of inotropes could exacerbate the left ventricular outflow tract obstruction.  

 

The importance of right ventricular function in cardiac surgery has been 

demonstrated in a variety of clinical settings such as high risk coronary or valvular heart 

disease, congenital heart disease, heart transplantation, in patients requiring mechanical 

assist devices and in the unstable postoperative patient (Table 12).  
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However, most of the evidence that supports the importance of right ventricular 

function is based on retrospective or small prospective studies. To date, parameters of right 

ventricular function have not been included in large-scale risk stratification models and 

therefore their incremental value to the Parsonnet score or the EuroSCORE have not been 

well established. [100;103;200;201] A recent panel from the National Institutes of Health 

has stressed the importance of research in the understanding of right ventricular 

failure. [191] Right ventricular dysfunction can be present before or after the surgical 

procedure.  

In patients presenting with severe aortic stenosis, Boldt et al. [202] have 

demonstrated that preoperative right ventricular dysfunction was associated with a greater 

requirement of postoperative inotropic support. In a retrospective study including patients 

undergoing mitral and mitral-aortic valvular surgery, Pinzani et al. [193] demonstrated that 

preoperative right ventricular failure was associated with perioperative mortality. In this 

same study, postoperative right ventricular failure was the most important independent 

predictor of late survival. In a small prospective study of 14 patients with severe non-

ischemic mitral regurgitation and high-risk descriptors (LVEF  45% or RV ejection 

fraction (RVEF)  20%), Wencker et al. [203] found that preoperative RVEF  20% 

predicted late postoperative death. In patients undergoing coronary revascularization, 

Maslow et al. [112] showed that right ventricular dysfunction defined by a right ventricular 

fractional area change (RVFAC) of less than 35% in the context of severe left ventricular 

systolic dysfunction (LVEF ≤ 25%) and non-emergent coronary revascularization was 

associated with an increased risk of postoperative morbidity and mortality. In this 

retrospective study (n = 41), patients with right ventricular dysfunction had a higher 

prevalence of diabetes mellitus and renal disease, as well as a higher incidence of 

postoperative inotropic or mechanical support, longer intensive care unit and hospital stay 

and a decreased short-term and long-term survival.  

The presence of right ventricular failure after CPB is associated with a mortality rate 

ranging from 44% to 86%. [4] The incidence of post-cardiotomy acute refractory right 

ventricular failure ranges from 0.04 to 0.1%. Acute refractory right ventricular failure has 

also been reported in 2-3% patients after a heart transplant and in almost 20-30% patients 
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who received a left ventricular assist device support, with a reported initial salvage rate of 

only 25-30%. [5]  

3.1.2.4 Right ventricular diastolic dysfunction 

The mechanism of right ventricular diastolic function was illustrated in Figure 23. 

Normal right ventricular diastolic function [204] is defined using normal values reported 

for Doppler transtricuspid flow early (E) and atrial (A) velocities, [205] hepatic venous 

flow (HVF) systolic (S), diastolic (D) and atrial reversal (AR) velocities [113;114;206] and 

tissue Doppler imaging (TDI) of the tricuspid annulus. [207;208] The latter are composed 

of the Et (early component of the TDI) and At (late or atrial component of the TDI). Right 

ventricular diastolic function is classified as normal (TTF E/A >1, HVF S/D >1, Et/At >1), 

mild diastolic dysfunction (E/A <1, or reversed AR >50% of S wave measured on HVF, or 

Et < At when both E/A and S/D >1), moderate diastolic dysfunction (E/A ≥ 1, S/D <1, 

Et/At <1), and severe diastolic dysfunction (S wave reversal on HVF, irrespective of the 

E/A and S/D ratio). 

Right ventricular diastolic dysfunction could constitute an additional marker to 

identify populations at higher risk of requiring vasoactive support, and potentially other 

clinical outcomes. We have previously documented that in hemodynamically unstable 

patients in the intensive care unit, abnormal right ventricular filling abnormalities were the 

most common echocardiographic observation. [19] We also noted, in a pilot study, that 

abnormal hepatic venous flow, when present before cardiac surgery, was associated with an 

increased need for vasoactive support after cardiac surgery. [34] In these two previous 

studies, patients were also not graded according to the severity of right ventricular diastolic 

dysfunction; however, in a recent study, [39] we were able to confirm that moderate to 

severe right ventricular diastolic dysfunction is associated with lower cardiac index and an 

increased risk of difficult separation from CPB. 
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3.1.2.5 Left ventricular outflow tract obstruction 

With the increasing use of echocardiography, both in the operating room and in 

critically ill patients, left ventricular outflow tract obstruction (LVOTO) is being diagnosed 

more frequently. Left ventricular outflow tract obstruction can be defined as an obstruction 

to blood flow, either fixed or dynamic, usually located below the aortic valve but 

sometimes involving regions up to the ventricular apex. The term mid-cavitary or apical 

obstruction is then used. [209;210] 

The diagnosis of LVOTO is critical because although the clinical manifestations are 

similar to those of left ventricular systolic dysfunction, the treatment and management are 

based on a completely different rationale. [211] Indeed, inotropic support, pharmacological 

or mechanical afterload reduction, and volume restriction used in heart failure would 

significantly deteriorate the hemodynamics of a patient presenting with a low output state 

resulting from LVOTO. Despite known risk factors for LVOTO, such as ventricular septal 

thickness > 13 mm, long posterior mitral leaflet, anteriorly displaced coaption point and 

mitro-aortic angle > 90 degrees, [212] we have seen this condition in numerous scenarios 

and believe that it has the potential to occur in almost every type of hemodynamically 

unstable patient presenting with a significantly reduced left ventricular preload. In LVOTO, 

elevated left ventricular filling pressure will be present with flow turbulence in the left 

ventricular outflow tract. In some patients, this turbulence can lead to a suctioning (Venturi 

effect) or drag effect [213] of the anterior leaflet of the mitral valve into the left ventricular 

outflow tract, the so-called SAM: systolic anterior motion. This will lead to mitral 

regurgitation, which is typically excentric (Figure 28).  
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Figure 28 Dynamic left ventricular outflow tract (LVOT) obstruction 

Mid-esophageal long-axis view in a 38-year-old man with hemodynamic instability. (A, B) 

Part of the anterior mitral valve leaflet is obstructing the LVOT. (C, D) This was associated 

with mitral regurgitation (MR). His hemodynamic condition improved with fluid and ß-

blockade (Ao, aorta; AoV, aortic valve; LA, left atrium; LV, left ventricle; SAM, systolic 

anterior motion). (With permission of Denault et al. [12]) 

 

The consequence of a left or right ventricular outflow tract obstruction will be a 

reduction in stroke volume and cardiac output with an elevated filling pressure (Figure 29).  
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Figure 29 Ventricular outflow tract obstruction 

Ventricular outflow tract obstruction of the right or left ventricle will be associated 

with a reduced venous return and cardiac output. The right atrial pressure will increase 

along the axis of the venous return curve. In that situation, the filling pressure will increase 

significantly and the ventricular stroke volume will be reduced.  

 

Two types of LVOTO can be clinically present: one is dynamic and the other will 

have underlying structural anatomical abnormalities such as those observed in hypertrophic 

obstructive cardiomyopathy or extrinsic mechanical compression. In the dynamic form, 
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tachycardia and preload reduction will predispose to LVOTO. The dynamic form has been 

observed in aortic valve replacement, in mitral valve repair and in the critically ill patient 

(Figure 28).  

In aortic stenosis, abnormal systolic intraventricular flow velocities can be observed 

reaching 14% and are aggravated with inotropes and vasodilators. [214] Aortic valve 

replacement for aortic stenosis in a patient with pre-existing left ventricular hypertrophy 

can cause significant SAM in the postoperative period. This results from the acute 

reduction in afterload, which allows increased left ventricular ejection in a small left 

ventricular outflow tract, thereby producing subvalvular stenosis or mid-ventricular 

obstruction. [12] This is usually transient and responds well to volume loading and 

cessation of inotropic drugs. However, in certain cases, surgical correction may be required 

(Figure 30). [215]  

 

Figure 30 Left ventricular outflow tract obstruction (LVOTO). 

A 53-year-old man with LVOTO after aortic valve replacement. (A,B) The mid-esophageal 

long-axis view showed the LVOTO secondary to left ventricular septal hypertrophy. (C) 
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Systemic hypotension was associated with the appearance of a giant “V” wave on the 

wedged pulmonary artery pressure (Ppa); tracing occurred as the patient was weaned from 

cardiopulmonary bypass. The “V” wave was secondary to mitral regurgitation from 

abnormal systolic anterior motion (SAM). This patient did not respond to medical therapy 

and underwent mitral valve replacement (Ao, aorta; LA, left atrium; LV, left ventricle; Pa, 

arterial pressure). (With permission of Denault et al. [12])   

 

Systolic anterior motion can also occur after MV repair for prolapse. This 

complication must be specifically looked for while in the operating room after surgery. The 

incidence of LVOTO after mitral valve repair varies from 2% to 14% [216] and is more 

frequent with myxomatous changes involving both leaflets. The underlying mechanisms 

include the anterior displacement of the coaptation point, as well as a longer and redundant 

posterior leaflet (with or without a more acute mitro-aortic angle), causing the mitral valve 

apparatus to be displaced toward the LVOT and be dragged by the outflow, provoking a 

typical SAM and subsequent subvalvular obstruction. Preoperatively, a longer posterior 

leaflet compared to the anterior leaflet (anterior/posterior length ratio  1.3) and a shorter 

distance (  2.5 cm) between the coaptation point and the septum are predictors of SAM 

development post-repair (Figure 31). [212] For some patients, the problem can be alleviated 

by increasing LV filling or reducing inotropic support. However, other patients require 

mitral valve replacement or subsequent repair. The sliding technique has been developed to 

decrease the incidence of this complication by reducing the posterior leaflet 

redundancy. [217]  
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Figure 31 Risk factors of systolic anterior motion (SAM) 

(A,B) Measurements to assess the risk for postoperative systolic anterior motion (SAM) 

after septal resection from a mid-esophageal four-chamber view  (AML, anterior leaflet 

length; Ao, aorta; LA, left atrium; LV, left ventricle; PML, posterior leaflet length; RA, 

right atrium; RV, right ventricle; SAM, systolic anterior motion; SLCL, septal to leaflet 

coaptation length). (Adapted with permission of Denault et al. [12])  

 

Finally, when using TEE in a series of 61 adults with unexplained hypotension for 

more than one hour in the intensive care unit, Heidenreich et al. [218] observed that 

LVOTO was present in 3% of patients. 

Among the mechanical or extrinsic etiology of LVOTO, in some patients, right 

ventricular failure can predispose to LVOTO, as previously discussed (Figure 27). In this 

situation, right ventricular dilatation will reduce the filling of the left ventricle, thus leading 
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to LVOTO. This is a very difficult situation to manage, as right ventricular dysfunction is 

associated with poor outcome in numerous scenarios. Inotropic therapy to improve right 

ventricular function may worsen LVOTO. In such a situation, to improve right ventricular 

function, we have been using inhaled pulmonary vasodilators, such as prostacyclin or nitric 

oxide, with good results. [18] Finally, we have also observed extrinsic cardiac obstruction 

leading to LVOTO in cases such as regional tamponade after cardiac surgery. [12] In these 

situations, LVOTO will resolve as soon as the underlying cause is removed.  

3.1.2.6 Right ventricular outflow tract obstruction 

Right ventricular outflow tract obstruction (RVOTO), which can also be due to 

extrinsic [219-221] or intrinsic causes, [222-224] can also result in hemodynamic 

instability. According to time-honoured hemodynamic criteria, RVOTO is defined as 

"significant" when the peak right ventricular to pulmonary artery systolic gradient exceeds 

25 mmHg. [225-227]  Furthermore, when observed via TEE, significant RVOTO is defined 

as "fixed" if there is no change in RV outflow tract (RVOT) dimensions during the cardiac 

cycle with an anatomic substrate for obstruction, and as "dynamic" if RVOT dimensions 

increase appreciably in diastole. Dynamic RVOTO has been observed in hypertrophic 

cardiomyopathy [228] and after lung transplantation, [229;230] but it has rarely been 

described during cardiac surgery. [231]  

3.1.2.7 Patient-prosthesis mismatch (PPM) 

The indexed effective orifice area for each prosthesis is derived from normal 

reference values of effective orifice area published in the literature divided by the patient‟s 

BSA, as previously described and validated. [120;123;232] Aortic PPM is defined as not 

clinically significant if the indexed effective orifice area is > 0.85 cm
2
/m

2
, as moderate if it is 

> 0.65 cm
2
/m

2
 and  0.85 cm

2
/m

2
, and as severe if it is  0.65 cm

2
/m

2
. Mitral PPM is defined 

as not clinically significant (i.e. mild or no PPM) if the indexed effective orifice area is 

> 1.2 cm
2
/m

2
, as moderate if it is > 0.9 cm

2
/m

2
 and  1.2 cm

2
/m

2
, and as severe if it is  0.9 

cm
2
/m

2
. [128] Moderate to severe aortic or mitral PPM can lead to increased LVEDP, filling 
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abnormalities (Figure 23), reduced coronary flow reserve, [126] pulmonary hypertension 

and right ventricular failure (Figure 27). This might explain why patients with PPM show 

an increase in mortality; however, the link between difficult separation from CPB and PPM 

has not yet been described. 

3.1.2.8 Embolism 

Embolism can be directed in the right or the left-sided cardiac chambers. It can be 

caused by thrombus, air, carbon dioxide or other materials (Figure 7). Right-sided 

embolism rarely occurs during cardiac surgery but can lead to acute right ventricular failure 

(Figure 27). Pulmonary embolism secondary to venous thrombus originating from the 

lower extremity is unusual during cardiac surgery because of the use of heparin. However, 

after heparin reversal using protamine and with mobilization, patients with predisposing 

conditions could develop this complication. The presence of mobile thrombus in the right 

atrium, right ventricle or pulmonary artery is pathognomonic of this condition (Figure 32).   
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Figure 32 Pulmonary embolism immediately after coronary revascularization 

This patient was hospitalized and waiting for more than a week before the procedure could 

take place. At the end of the procedure, while she was transferred in her bed, she became 

hemodynamically unstable. A transesophageal echocardiographic exam was immediately 

performed and showed the appearance of a clot in the right pulmonary artery (A-B). She 

was brought back to the operating room for urgent embolectomy and the clot was removed 

(C). She was discharged from the hospital in good condition. (Ao: aorta, RPA: right 

pulmonary artery, SCV: subclavian vein, SVC: superior vena cava) (Courtesy of Dr. David 

Bracco and Dr. Nicolas Noiseux).  

 

Air embolism is frequently observed during cardiac surgery and usually has 

minimal or no consequence when present on the right-sided chambers, unless massive. In 

such a situation, the diagnosis is based on the appearance of an hyperechoic mobile signal 

in the right-sided chambers and pulmonary artery. Air will tend to accumulate in the most 

anterior portion of the right ventricle, i.e. the anterior leaflet of the pulmonic valve (Figure 

33).  
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Figure 33 Air embolism 

Air embolism in a 46-year-old woman hemodynamically unstable during spinal surgery in a 

ventral position. (A,B) She was turned back to a supine position and a mid-esophageal right 

ventricular outflow view revealed the residual presence of air bubbles on the most anterior 

aspect of the right ventricle (RV), pulmonary artery (PA) and on both sides of the anterior 

pulmonic valve (Ao, aorta; LA, left atrium). (Adapted with permission of Denault et 

al. [12]) 

 

The presence of air in the left-sided chambers is also common during valvular or 

open heart surgery. When present, it can lead to right ventricular dysfunction through air 

embolisation of the right coronary artery. This explains why the de-airing process of the 

left-sided chambers is of significant importance in valvular surgery (Figure 34).  
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Figure 34 Air embolism 

A 61-year-old woman underwent aortic valve replacement. She was easily weaned from 

cardiopulmonary bypass (CPB). As she was transferred onto the transportation bed, she 

developed acute pulmonary hypertension (A) followed by ventricular fibrillation. (B–E) 

She was resuscitated and a transesophageal echocardiographic exam was performed. A 

mid-esophageal aortic valve long-axis and short-axis view revealed strong echogenic 

material close to the prosthetic valve, consistent with air emboli dislodged during 

mobilization of the patient (Ao, aorta; EKG, electrocardiogram; LA, left atrium; LV, left 

ventricle; Pa, arterial pressure; PA, pulmonary artery; Ppa, pulmonary artery pressure; Pra, 
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right atrial pressure; RV, right ventricle; SVC, superior vena cava). (Adapted with 

permission of Denault et al. [12]) 

 

Carbon dioxide used during saphenectomy can also inadvertently be directed into 

the systemic circulation. Carbon dioxide embolism should be suspected when an increase in 

end-tidal carbon dioxide is followed by a decrease in cardiac output and hypotension. TEE 

is the most sensitive method to detect gas embolism [233] (Figure 35). We have observed 

such cases on two occasions. [28;234] Acute right ventricular failure requiring emergency 

CPB was the consequence of the first case. However, in the second case, the use of inhaled 

prostacyclin prevented us from using CPB. [28] 

 

Figure 35 Carbon dioxide (CO2) embolism 

Mid-esophageal four-chamber view showing CO2 embolism in a 69-year-old man 

undergoing laparoscopic saphenectomy who suddenly became hemodynamically unstable. 

(A, B) A mid-esophageal four-chamber view showed the appearance of bubbles in the right 

atrium (RA) and right ventricle (RV) originating from the inferior vena cava. This was 

associated with right cardiac chamber dilatation. (C) The hemodynamic instability 

coincided with an abrupt rise in end-tidal CO2 (LA, left atrium; LV, left ventricle). 

(Adapted from Martineau et al. [28])  
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3.1.2.9 Hypoxemia and hypercapnia 

Both hypoxemia and hypercapnia will lead to pulmonary vasoconstriction, 

pulmonary hypertension and increased right atrial pressure. This is consistent with the 

rationale for the Airway-Breathing-Circulation (ABC) method in resuscitation. Airway 

management and breathing remain the two initial and essential steps in the management of 

any hemodynamically unstable patient. The effect of hypoxemia is illustrated in Figure 36.  

 

Figure 36 Hemodynamic effect of hypoxemia 

Severe hypoxemia in a 48-year-old man observed after coronary revascularization. (A) 

During the hypoxic episode, the pulmonary artery pressure increased to 61/33 mmHg. (B) 

Using positive end-expiratory pressure, the hypoxic episode was corrected and the 

pulmonary artery pressure decreased to 35/25 mmHg. (C) Using near-infrared 

spectroscopy, the hypoxemia was associated with a reversible reduction in the brain 

oximetry signal.  
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Hemodynamic instability through hypoxemia will lead to right ventricular failure 

and its consequences on left ventricular function (Figure 27). During cardiac surgery, 

hypoxemia can result from a ventilation-perfusion mismatch or through a right to left shunt. 

In the latter case, the shunt is typically through a patent foramen ovale. (PFO or “Trou de 

Botal”) present in 20% of the adult population (Figure 37).  

 

Figure 37 Patent foramen ovale (PFO) 

(A,B) A PFO demonstrated by color flow Doppler in a mid-esophageal bicaval view. (C,D) 

Opacification of the right-sided cardiac chambers by intravenous injection of agitated 

normal saline. During the release phase of the Valsalva maneuver, microbubbles are seen 

crossing to the left atrium (LA) through a PFO. (With permission of Denault et al. [12]) 

 

A PFO has a normal amount of tissue when the septum primum is complete, but it 

does not fuse with the septum secundum to obliterate the foramen ovale. A right to left 

shunt can be elicited with a Valsalva maneuver. Patency of the foramen ovale can be 
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anatomically demonstrated with a probe. It usually has no consequences unless it is 

responsible for a cerebrovascular accident through paradoxical emboli (Figure 38). Some 

authors, however, suggest that it should be closed if found in a patient in whom a cardiac 

surgical procedure is performed, [235] but recent evidence suggest no survival 

benefit. [236] The presence of a PFO may alter the method of venous cannulation in the 

case of left-sided valve surgery or the need for cardioplegia in right-sided valve surgery. In 

cases where the patient is at a high risk of hypoxemia post-bypass, such as LVAD insertion 

and heart transplant, closure of the PFO is warranted. 

 

Figure 38 Paradoxical pulmonary embolism 

Paradoxical pulmonary embolism in a 48-year-old man who presented with acute 

hypotension. (A,B) Mid-esophageal view at 55° showing a thrombus across the patent 

foramen ovale. (C) Intraoperative aspect of the pulmonary emboli. (D) Autopsy finding of a 

patent foramen ovale in a patient who died of refractory hypoxemia. (Courtesy of Dr. 

Michel Pellerin and Dr. Tack Ki Leung) (With permission of Denault et al. [12]) 
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Hypercapnia also results in pulmonary vasoconstriction and pulmonary 

hypertension. The hemodynamic and echocardiographic consequences are the same as 

those of hypoxemia. [237;238] The effect of hypercapnia can easily be demonstrated during 

organ donation. In the determination of cardiac death, it is essential to demonstrate the 

absence of any spontaneous breathing during 10 minutes of apnea. In such a situation, the 

hemodynamic and echocardiographic effects of hypercapnia can be appreciated (Figure 

39). Interestingly, changes in the dimension of the right atrium precede the increase in right 

atrial pressure (Figure 40). This is most likely secondary to the normal reduced compliance 

of the right atrial cavity. 

 

Figure 39 Hypercapnia and cardiac function 

(A) Tricuspid regurgitation continuous-wave Doppler signal before the apnea testing. The 

peak presssure gradient is 35.2 mmHg. The pulmonary artery pressure and right atrial 

pressure were 27/11 and 6 mmHg. (B) After 10 minutes of apnea, the peak pressure 

gradient increased up to 81.7 mmHg. The pulmonary artery pressure and right atrial 
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pressure were 82/43 and 12 mmHg. (C) At about the same time, right ventricular and atrial 

dilatation were present. (D) The right-sided dilatation were reversed once mechanical 

ventilation was resumed.  

 

 

Figure 40 Hypercapnia and right atrial dimension and pressure 

Relation between the right atrial area and the right atrial pressure (Pra) during apnea testing 

in organ donation. Initially, the right atrial area increases in size, but at 7 minutes only, the 

Pra starts to rise, reaching maximal value at 10 minutes. A reduction in right atrial area and 

Pra was observed when mechanical ventilation was resumed.  

 

In summary, several conditions will contribute to the increase in right atrial 

pressure. The use of TEE is essential in the diagnosis and treatment of these various 

conditions. If there is no evidence of altered Pms or Pra, then the next step is to rule out any 

increase in resistance to venous return. 
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3.1.3 Increased resistance to venous return 

There are two mechanisms of increased resistance to venous return: the first is the 

extrinsic compression of the circulatory system, or compartment syndrome, and the second 

is the intrinsic partial or complete occlusion of the extracardiac large vessels, or vena cava 

syndrome. 

The resistance to venous return will be significantly impeded in situations in which 

pericardial, mediastinal, thoracic or abdominal pressure will increase, such as during an 

abdominal compartment syndrome. [148;239] In these situations, an upward shift of the 

pressure-volume curve will be observed. The right and left ventricular pressure will be high 

(from the outside compression) and volume normal or low (Figure 41). 
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Figure 41 Mechanism of increased resistance to venous return during tamponade 

In tamponade, venous return and cardiac output are reduced. Right atrial pressure is 

increased. This is secondary to the rise in pericardial pressure. In addition, venous return 

will now be limited not by subatmospheric pressure but by the pericardial pressure. As a 
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result, venous return is now equal to the difference between Pms and the pericardial 

pressure divided by the resistance to venous return. The venous return slope is reduced 

from an increase in the resistance to venous return. A normal compensatory increase in 

mean systemic pressure (Pms) will also be observed secondary to the activation of the 

autonomic nervous system. (B) Biventricular pressure-volume relationships in pericardial 

tamponade. The increase in pericardial pressure will be transmitted to both ventricles. As a 

consequence, an upward shift of the horizontal part of the pressure-volume relationship will 

be observed. This is typically associated with the equalization of end-diastolic pressures. As 

pericardial pressure increases and tamponade develops, biventricular volumes will be 

further reduced. Consequently, left ventricular pressure and systemic pressure will be 

reduced. (With permission of Durand et al. [240])  

 

These conditions are difficult to diagnose without echocardiography and 

extracardiac pressure or intra-abdominal monitoring. [27] However, as the chest and 

pericardium are opened at the end of cardiac surgery, their contribution to hemodynamic 

instability is minimal and can be neglected. However, their contribution will appear as soon 

as the chest is closed. The causes of increased Rvr are pericardial (cardiac tamponade), 

mediastinal (after CPB), pleural (hemothorax and pneumothorax) and abdominal 

compartment syndromes. 

In the classical presentation of cardiac tamponade, fluid accumulates across the 

pericardium. The right atrium, having the lowest pressure, will be the first cardiac chamber 

to collapse in diastole, followed by the right ventricle and left atrium in diastole. This can 

be easily diagnosed using transthoracic or transesophageal echocardiography (Figure 42). 
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Figure 42 Classical tamponade. 

Classical tamponade diagnosed using transesophageal echocardiography in a patient, 

developing after surgical coronary revascularization from a deep transgastric view. (A) The 

arterial pressure (Pa) waveform shows the typical respiratory variation of pulsus paradoxus. 

The patient was on significant high doses of noradrenaline. (B) The intermittent 

compression of the right atrium (RA) can be visualized (CABG, coronary artery bypass 

graft; LV, left ventricle; PE, pericardial effusion). (With permission of Durand et al. [240])  

 

After cardiac surgery, however, localized tamponade can occur with the regional 

compression of any of the cardiac chambers. In such a situation, transesophageal 

echocardiography is mandatory to rule out regional tamponade (Figure 43). As tamponade 

progresses and shock worsens, coronary perfusion pressure is compromised, leading to 

additional myocardial dysfunction. [241]  
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Figure 43 Regional tamponade. 

Transesophageal echocardiography from a mid-esophageal view showing a large 

clot compressing the right atrium (RA) and right ventricle (RV) before (A,B) and after 

(C,D) removal . (LA: left atrium, LV: left ventricle) (With permission of Durand et 

al. [240]) 

 

The other mechanism of increased Rvr is any pleural pathology that would increase 

the extrinsic cardiac pressure. This can be a hemothorax or a pneumothorax. The former 

can be diagnosed using echocardiography (Erreur ! Source du renvoi introuvable.); 

however, the latter is more difficult to diagnose, as ultrasound does not penetrate air. 

Nevertheless, specific echocardiography signs of pneumothorax have been described using 

chest ultrasound [242] and could perhaps be used together with transthoracic 

echocardiography at the bedside. Just as with tamponade, the consequence of the 

pneumothorax is the compression of the cardiac cavity with the lowest pressure. If the 
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pneumothorax is anterior to the left side, the RVOT will be compressed specifically during 

diastole (Figure 44) We observed and reported this condition after lung 

transplantation. [27] 

 

 

Figure 44 Hemodynamic consequence of a pneumothorax 

A 19-year-old hemodynamically unstable man with chest contusion was admitted for organ 

donation. Using a mid-esophageal view of the right ventricular outflow tract (RVOT), a 

diastolic obstruction of the RVOT was observed using M-mode. The obstruction was 

secondary to an anterior left pneumothorax compressing the RVOT.  

 

In complex and long procedures, it has been noted in some patients that the closure 

of the sternum produces hemodynamic instability that is reversible when the chest is 

reopened. The mechanism is secondary to extrinsic compression of the cardiac structures 

(Figure 45). 
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Figure 45 Mediastinal tamponade 

A 62-year-old woman was admitted for urgent revascularization after failure of coronary 

angioplasty. She was intubated and on vasoactive agents before the surgery. (A) Her 

hemodynamic waveforms are shown before. As the chest was closed, she became more 

hemodynamically unstable with increased vasoactive requirements. This was associated 

with equalization of the right ventricular and diastolic pulmonary artery pressures (B). In 

addition, profound bilateral brain desaturation was observed using near-infrared 

spectroscopy (NIRS) (C). It was then decided to reopen the chest (D) and to transfer the 

patient to the intensive care unit with a sterile dressing on the mediastinum. The reopening 

of the chest was associated with an improved hemodynamic condition and improved NIRS 

values (E). 

  

The last mechanism of extrinsic compression is the abdominal compartment 

syndrome (ACS) and, unfortunately, it is still poorly recognized and diagnosed in cardiac 

surgery. Abdominal compartment syndrome is defined as a sustained abdominal pressure > 

20 mmHg with evidence of organ dysfunction relieved by abdominal decompression. [239] 

The term intra-abdominal hypertension (IAH) is used to describe abdominal pressures 

ranging from 12 to 20 mmHg. An increased pressure in a non-expendable compartment 

reduces capillary bed perfusion and promotes bacterial translocation, which is then 

followed by the activation of inflammatory cytokines. [136] The latter causes leakage 

through vascular walls and edema, which further contributes to the rise in intra-abdominal 
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pressure. The reduction in the abdominal perfusion pressure (APP) defined as the 

difference between mean arterial pressure (MAP) and intra-abdominal pressure (IAP) leads 

to organ ischemia. The associated rise in abdominal pressure increases the resistance to 

venous return (Figure 41). This will reduce venous return and lead to low cardiac output 

and shock. [243] Furthermore, as the IAP increases, the diaphragm is pushed cephalad 

which reduces thoracic or the extrapulmonary compliance. The consequences of this 

condition include a reduced glomerular filtration, an oligoanuric state, hepatic dysfunction 

and intestinal ischemia. The acute compartment syndrome has been shown to be an 

independent risk factor for mortality in the intensive care unit. [244] The risk factors of 

ACS are summarized in Table 13 and can be divided in three categories: diminished wall 

compliance, increased intra-abdominal content and capillary leak. [244;245]  

From Table 13, it appears that several of these risk factors can be present during 

cardiac surgery. Clinical manifestations are non-specific and include decreased urine 

output, high ventilatory pressures and a tense abdomen. Monitoring the intravesical 

pressure is essential to establishing the diagnosis. In patients with intra-abdominal 

hypertension and acute compartment syndrome, the abdominal perfusion pressure should 

be maintained above 50-60 mmHg. [148] Treatment should be directed towards the 

management of the underlying cause. Specific goals should be to improve abdominal wall 

compliance, reduce abdominal fluid and/or air and to correct the positive fluid balance. The 

most definitive intervention is decompression laparotomy with temporary abdominal 

closure. [246] However, this approach is not without risks and is not always curative. [247] 

The use of diuretics, paracentesis, nasogastric tubes (Figure 46) and dialysis can be very 

effective.  
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Table 13 Abdominal compartment syndrome  

1) Diminished wall compliance 
 Abdominal surgery 

 Acute respiratory distress syndrome 

 Major burns/trauma 

 Mechanical ventilation 

 Prone position 

 Obesity (body mass index > 30 kg/m²) 

 

2) Intra-abdominal content 

 Liver dysfunction (ascitis) 

 Hemo-/pneumoperitoineum 

 Increasing intraluminal fluid content (Ex. contrast enema) 

Ileus/gastroparesis 

Acute colonic pseudo-obstruction; colonic dilatation (Ogilvie syndrome) 

 Tumor 

 

3) Capillary leak/resuscitation 

 Massive resuscitation 

 Polytransfusion (> 10 blood units/24 h) 

 Acidosis (pH < 7.2) 

 Sepsis 

 Hypothermia (< 33
o
 C) 

 Hypotension 

 Coagulopathy 

 Major burns/trauma 

 Emergency laparotomy 

 

(With permission of Deslauriers et al. [158]) 
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Figure 46 Acute abdominal compartment syndrome after induction of anesthesia. 

A 65-year-old woman difficult to intubate and ventilate was hemodynamically unstable 

after the induction of general anesthesia. A chest radiograph demonstrates a distended 

stomach. A nasogastric tube was inserted and the vasoactive support stopped.  

 

The second mechanism of increased resistance to venous return is the vena cava 

syndrome, which results in the intrinsic obstruction of the large vessels. In such a situation, 

a significant hemodynamic instability will be present with a normal or reduced cardiac 

volume similar to a reduction in Pms. This has been observed following the removal of the 

inferior vena cava cannula and accidental partial closure of the inferior vena cava (Figure 

47). We have seen it also during a Fontan procedure during which the anastomosis to the 

inferior vena cava was partially obstructed (Figure 48). 
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Figure 47 Partially occluded inferior vena cava (IVC) 

(A,B) Mid-esophageal right ventricular view in a patient after aortic valve replacement. A 

turbulent flow was observed at the entrance of the IVC. It was secondary to a partial 

obstruction of the IVC at the site of cannulation. (C) Significantly reduced hepatic venous 

flow (HVF) with systolic reversal was present.  

 



157 

 

 

Figure 48 Inferior vena cava (IVC) occlusion during Fontan procedure 

(A,B) Transgastric view showing a dilated IVC following a Fontan procedure. The 

occlusion was secondary to a partial occlusion at the level of the graft anastolosis to the 

IVC. (C,D) Hepatic venous flow (HVF) before and after cardiopulmonary bypass (CPB). 

The HVF is almost absent after CPB. 

A misplaced intra-aortic balloon catheter in the inferior vena cava will also 

contribute to hemodynamic instability, particularly during diastole when it is inflated 

(Figure 49). All these conditions can be suspected or diagnosed with the use of TEE. 
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Figure 49 Intra-aortic balloon pump (IABP) catheter in the inferior vena cava (IVC). 

(A,B) Emergency positioning of the IABP in the operating room after cardiopulmonary 

bypass. The IABP was not in the aorta but in the IVC. (With permission of Denault et 

al. [13])  

 

The superior vena cava can also be obstructed during cardiac surgery. Typically, it 

is caused by a misplaced or obstructing superior vena cava venous cannula. Although this is 

not typically associated with hemodynamic instability, it can lead to brain hypoperfusion by 

reducing the cerebral perfusion pressure. Pressure monitoring of the internal jugular 

pressure and infrared spectroscopy are modalities useful in such diagnoses (Figure 50). 

In summary, the resistance to venous return, either through the extrinsic 

compression of the cardiac chambers or great vessels (compartment syndrome) or through a 

partial or complete vascular occlusion (vena cava syndrome), is an important factor that 

needs to be diagnosed during cardiac surgery as a potential mechanism of hemodynamic 

instability and difficult separation from CPB. 
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Figure 50 Brain desaturation during cardiac transplantation. 

(A) A reduction down to 43% in brain saturation was observed during cardiac 

transplantation. (B) Despite adequate mean arterial pressure (from radial and femoral 

transducers) during cardiopulmonary bypass, the desaturation was associated with an 

increase in the left internal jugular vein (LIJV) pressure of 65 mmHg. At that point, the 

cardiothoracic surgeon decided to reposition the superior vena cava (SVC) cannula that was 

occluding cerebral venous return. The brain oximetry value increased. (C) The LIJV 

pressure decreased to 12 mmHg. (With permission of Denault et al. [130]) 

 

3.1.4 Combined mechanism 

Finally, combinations of causes of difficult separation from CPB are the rule rather 

than the exception. [19] For instance, RV systolic failure will lead to LV diastolic 

dysfunction through septal interaction (Figure 27). In these conditions, the hemodynamic 

values will be the result of two different conditions, and only echocardiography can enable 

the diagnosis of these two separate entities, as previously shown. [19] Severe shock state 

independently of their cause, when persisting, can lead to vasodilatory shock. [137] 
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In our experience, the majority of these diagnoses can be made via the combination 

of both hemodynamic and echocardiographic modalities. These conditions require a 

specific treatment. [44] For instance, inotropes are indicated in the presence of left or right 

ventricular systolic dysfunction, but contra-indicated in the presence of outflow tract 

obstruction. [38] In both conditions, the hemodynamic characteristics will be the same: 

reduced venous return and elevated filling pressure. However, the treatment is completely 

the opposite: inotropic therapy is indicated with systolic dysfunction, but inotropic 

withdrawal is the therapy for any outflow tract obstruction. 

Conditions associated with increased right atrial pressure are particularly important 

to differentiate using TEE. Each condition has a different therapeutic implication, as shown 

in Table 14. This is one of the reasons why the use of TEE is considered a type 1 indication 

in the presence of hemodynamic instability. [248] Echocardiography is therefore an 

essential tool in any research dealing with complex hemodynamic conditions. A systematic 

approach in the diagnosis and treatment of hemodynamic instability should be proposed in 

cardiac surgery. This approach should be based on the concept of venous return and uses 

combined and simultaneous TEE and hemodynamic monitoring to estimate biventricular 

pressure volume relationships.  

Figure 51 summarizes the mechanisms of hemodynamic instability resulting from 

reduced Pms, increased Pra and Rvr. Relevant hemodynamic and echocardiographic 

measurements performed during cardiac surgery are summarized in Table 15.  
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Figure 51 Mechanism of hemodynamic instability in cardiac surgery 

(PPM, patient-prosthesis mismatch) 
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3.2 Research and development since the beginning of the PhD in 

2006 at the MHI  

Several of the determinants of venous return were studied over the last four years. 

They will be discussed in this section. 

3.2.1 Studies on alternative measurement of venous return and cardiac 

output 

Venous return and cardiac output can be measured using several techniques. In the 

operating room, we commonly use the pulmonary artery catheter to obtain thermodilution-

derived cardiac output. In addition, the use of Doppler echocardiography allows us to 

calculate cardiac output. [12] The limitation of these two methods is that they are invasive 

and provide intermittent measurements only. An alternative to this technique would be 

near-infrared spectroscopy (NIRS). 

Near-infrared spectroscopy (NIRS) is a technique that was first developed in the 

70s [249;250] and that can be used as a non-invasive and continuous monitor of the balance 

between cerebral oxygen delivery and consumption. [135] Several different specialties such 

as neurology, [251] neurosurgery, [252] traumatology, [253] vascular surgery, [254] and 

adult [135] and pediatric cardiac surgery [255] have been using this monitor to measure 

brain and tissue perfusion. [129] In fact, some randomized controlled trials have recently 

shown the usefulness of this monitor to predict negative outcomes in non-cardiac [133] and 

cardiac surgery. [134] Several factors can affect oxygen delivery to the brain such as 

cardiac output, hemoglobin concentration, arterial oxygen saturation and partial pressure of 

oxygen. However, in an awake patient, the major determinants of baseline brain oximetric 

signals are not clearly described. Few studies have reported the relationship between 

cerebral oximetry values (ScO2) and cardiac function. [249;250] As cardiac performance is 

reduced, increased brain oxygen extraction and lower ScO2 values can be observed. [249] 

In addition, ScO2 has been shown to correlate with the presence of left ventricular 

dysfunction in patients with valvular disease during exercice testing. [250] However, ScO2 

has never been compared with both hemodynamic and echocardiographic assessments of 



169 

 

the cardiac function in patients undergoing cardiac surgery. Our hypothesis was that the 

baseline mean ScO2 value measured before surgery is determined by cardiac function and 

correlates with hemodynamic and echocardiographic parameters. 

In order to test our hypothesis, we performed a retrospective analysis of patients 

undergoing cardiac surgery with bilateral recording of their baseline cerebral brain oxygen 

saturation (ScO2) using the INVOS 4100 (Somanetics, Troy, MI, USA). [47] A pulmonary 

artery catheter was used to obtain their hemodynamic profile. Left ventricular systolic and 

diastolic function were evaluated by TEE, after induction of anesthesia, using standard 

criteria. A model was developed to predict ScO2. A total of 99 patients met the inclusion 

criteria. There were significant correlations between mean ScO2 values and central venous 

pressure (CVP) (r = -0.31, p = 0.0022), pulmonary capillary wedge pressure (PCWP) (r = -

0.25, p = 0.0129), mean pulmonary artery pressure (MPAP) (r = -0.24, p = 0.0186), mean 

arterial pressure/mean pulmonary artery pressure ratio (MAP/MPAP) (r = 0.33, p =  

0.0011), LV fractional area change (< 35, 35-50, ≥ 50, p = 0.0002), regional wall motion 

score index (r = -0.27, p = 0.0062) and diastolic function (p = 0.0060). Mean ScO2 

presented the highest area under the receiver operating curve (ROC) (0.74; CI 0.64-0.84) to 

identify LV systolic dysfunction. A model predicting baseline ScO2 was created based on 

LV systolic echocardiographic variables, CVP, gender, mitral valve surgery and the use of 

beta-blocker (r² = 0.42, p < .001). Baseline ScO2 values were related to cardiac function 

and superior to hemodynamic parameters at predicting left ventricular dysfunction. Our 

observations are summarized in Figure 52. 
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Figure 52 Brain-heart interaction 

Relationship between reduced cerebral oxygen saturation (ScO2) and cardiac 

systolic/diastolic function. As systolic cardiac function is reduced through a reduction in 

the left ventricular fractional area change (FAC) or an increase in the regional wall motion 

score index (RWMSI), the mean arterial pressure (MAP) will be reduced. Cardiac 

performance can also result from left ventricular diastolic dysfunction (LVDD), which can 

be present with or without systolic dysfunction. In this case, the left atrial pressure (LAP), 

pulmonary capillary wedge pressure (PCWP) and consequently the mean pulmonary 

arterial pressure (MPAP) will increase, the MAP/MPAP ratio decrease and this may lead to 

an increase of the central venous pressure (CVP). As the CVP is used to estimate the intra-

cranial pressure, the cerebral perfusion pressure (MAP-CVP) will be reduced. The result 

will be a reduction in cerebral blood flow (CBF). This will lead to an increase in the oxygen 

extraction of the brain. This explains why a reduced cardiac function is associated with 

reduced ScO2. (LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle). 

(With permission of Paquet et al. [47]) 
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3.2.2 Studies on causes of increased Pra 

Over the last 4 years we performed studies on systolic and diastolic dysfunction and 

documented the prevalence of RVOTO. 

3.2.2.1 Left ventricular systolic and diastolic function 

To support our hypothesis on the role of left ventricular systolic dysfunction as a 

predictor of outcome in cardiac surgery, we performed an observational study that included 

3024 adult patients who underwent cardiac operations at the Montreal Heart Institute (MHI) 

from 1996 to 2000 (61% of the population operated in that period) and in whom left 

ventricular ejection fraction and other variables were measured prior to the cardiac 

surgery. [11] Left ventricular ejection fraction was the last measured value reported prior to 

surgery by left ventriculography, [256] echocardiography [257] or nuclear medicine. [258] 

The lowest value was selected. Surgical procedures were categorized as coronary 

revascularization, valvular, complex valve, re-operations and various. The complex 

operations were either multivalvular or valvular with or without coronary revascularization. 

Include also were ascending thoracic aorta operation and surgery for complications of 

myocardial infarction. Off-pump cardiac surgery and surgery of the descending aorta or 

patent ductus arteriosus were excluded. The primary outcome in this study was hospital 

mortality. Patients undergoing coronary revascularization were further stratified according 

to abnormal LV. Those left ventricular ejection fraction values were based on previous 

studies which identified them as cut-offs associated with increased mortality and 

morbidity. [8;100;259] Only variables with p values < 0.25 in univariate analysis were 

considered potential predictors of the primary outcome for multivariate analysis. Variable 

clustering was employed to further reduce the number of redundant variables before 

building a multivariate model. Then, stepwise multiple logistic regression analysis was 

undertaken to determine the independent predictors of death. P values < 0.05 were 

considered to be statistically significant. A total of 3024 patients were taken into account in 

the study. There were 99 deaths (3.3%). Of the 35 variables subjected to univariate 

analysis, 23 demonstrated a significant association with the occurrence of death. Stepwise 
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multiple logistic regressions identified eight variables to be independent predictors of death 

after cardiac surgery. These included age, weight, hypertension, treated diabetes, 

reoperation, left ventricular end-diastolic pressure, left ventricular ejection fraction and 

duration of CPB. Therefore, for a relative reduction of 10% of left ventricular ejection 

fraction, the risk of death increases by 32% (14-53%). A total 57% of deaths were 

attributed to hemodynamic instability. Postoperatively, 6% of those who died required 

vasopressors and 17% required an intra-aortic balloon pump (IABP) to be weaned, 

compared with 1% and 4% in the survivors group, respectively (p < 0.0001).  

As mentioned previously, Salem et al. conducted an observational study to 

determine the relationship between preoperative left ventricular end-diastolic pressure and 

mortality following cardiac surgery. [11] The hypothesis was that an elevated left 

ventricular end-diastolic pressure, with or without preserved left ventricular systolic 

function, is associated with a poor outcome after cardiac surgery. As shown in Table 16, 

left ventricular end-diastolic pressure was found to be an independent predictor of 

mortality. For a relative increase in 5 mmHg of left ventricular end-diastolic pressure, the 

risk of mortality increases by 19% (5-35%).  
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Table 16 Multivariate analysis for mortality 

Predictors P Units Odds ratio 95% CI 

Age < 0.0001 20 4.255 2.461, 7.355 

Weight, kg 0.0403 -10 1.190 1.008, 1.404 

LVEDP  0.0062 5 1.195 1.052, 1.357 

LVEF 0.0002 -10 1.326 1.145, 1.535 

CPB length, min < 0.0001 30 1.813 1.608, 2.044 

Reoperation < 0.0001 -- 2.669 1.636, 4.354 

Hypertension 0.0211 -- 1.687 1.082, 2.632 

Treated diabetes 0.0277 -- 1.759 1.064, 2.906 

CI indicates confidence interval; LVEDP, left ventricular end-diastolic pressure; LVEF, left 

ventricular ejection fraction; CPB, cardiopulmonary bypass. (From Salem et al. [11]) 

 

Furthermore, in patients undergoing coronary revascularization (n = 2445), the 

mortality in patients with left ventricular ejection fraction < 30% was higher in those with 

elevated left ventricular end-diastolic pressure > 19 mmHg (12%) compared to those with 

left ventricular end-diastolic pressure  19 mmHg (0%) (Table 17).  

 

Table 17 Mortality in patients undergoing coronary artery bypass grafting 

 LVEDP  19mmHg 

LVEF  30% 

LVEDP 

 19mmHg 

LVEF  30% 

LVEDP 

 19mmHg 

LVEF  30% 

LVEDP 

 19mmHg 

LVEF  30% 

No 75 (88%) 1244 (97%) 30 (100%) 1033 (98%) 

Yes  10 (12%)* 35 (3%) 0 (0%) 18 (2%) 

Total 85 1279 30 1051 

LVEDP, left ventricular end-diastolic pressure; LVEF, left ventricular ejection 

fraction * P < 0.0001 compared with patients with LVEDP ≤ 19 and LVEF < 30 

(From Salem et al. [11]) 
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A similar trend was observed in non-coronary revascularization patients (n = 895), 

but it was not statistically significant (Table 18). The definition of diastolic dysfunction can 

be applied to patients with or without LV systolic dysfunction who have filling 

abnormalities. In summary, these observations support the link between mortality and both 

left ventricular systolic and diastolic dysfunction. 

 

Table 18 Mortality in patients undergoing non-coronary artery bypass grafting 

 LVEDP  19mmHg 

LVEF  30% 

LVEDP 

 19mmHg 

LVEF  30% 

LVEDP 

 19mmHg 

LVEF  30% 

LVEDP 

 19mmHg 

LVEF  30% 

No 41 (89%) 292 (94%) 26 (93%) 480 (96%) 

Yes  5 (11%) 19 (6%) 2 (7%) 20 (4%) 

Total 46 311 28 500 

LVEDP, left ventricular end-diastolic pressure; LVEF, left ventricular ejection 

fraction. (From Salem et al. [11]) 

 

3.2.2.2 Right ventricular systolic and diastolic function 

To further assess the value of right ventricular function in relation to other validated 

risk factors in open valvular heart surgery, we published our experience with 50 

consecutive patients undergoing valvular surgery. [46] In our study we confirmed that, in 

patients with a right ventricular myocardial performance index (RVMPI) above 50% 

(n = 20), the number of patients with difficult separation from CPB (16/20 (80%) vs. 6/30 

(20%), p < 0.0001) and the endpoint of mortality of postoperative heart failure (14/20 

(74%) vs. 3/30 (10%), p < 0.0001) were significantly higher. On a multivariate analysis, 

among all other demographic, hemodynamic and echocardiographic variables, the RVMPI 

was the only independent predictor of heart failure and mortality (OR: 25.20, 95% CI 5.24-

121.15, p < 0.0001).  
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3.2.2.3 Right ventricular outflow tract obstruction 

The prevalence of RVOTO was retrospectively studied in 670 consecutive patients 

undergoing cardiac surgery. [38] Significant RVOTO was diagnosed if the right ventricular 

systolic to pulmonary artery peak gradient was over 25 mmHg. The diagnosis was based on 

the measurement of the right ventricular and pulmonary artery systolic pressures through 

the paceport and distal opening of the pulmonary artery catheter. To further validate the 

prevalence and the importance of RVOTO, 130 patients were prospectively studied over a 

12-month period. In the retrospective cohort, 6 patients (1%) undergoing various types of 

cardiac surgical procedures were found to have significant dynamic obstruction with a 

mean gradient of 31 ± 4 mmHg (26 to 35 mmHg).  In the prospective study, significant 

dynamic obstruction was identified in 5 patients (4%) (average peak: 37 ± 15 mmHg; 

range: 27 to 60 mmHg). The typical transesophageal echocardiography finding was end-

systolic obliteration of the RVOT (Figure 53).  

 

Figure 53 Dynamic right ventricular outflow tract (RVOT) obstruction 
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Septal myomectomy and aortic surgery in a 68-year-old man complicated by dynamic 

RVOT obstruction appearing during weaning from cardiopulmonary bypass. (A) The 

systolic gradient between the right ventricle and the pulmonary artery was 28 mmHg.  

(B,C,D) M-mode view from a mid-oesophageal right ventricular inflow-outflow view at 

63º. Note the dynamic obstruction of the right ventricular outflow in systole in this (LA, 

left atrium; Pa, arterial pressure; Ppa, pulmonary artery pressure; Prv, right ventricular 

pressure; RA, right atrium; RV, right ventricle). (With permission of Denault et al. [38]) 

 

In patients with significant dynamic RVOTO, hemodynamic instability was present 

in 10/11 patients (91%). Therefore, RVOTO is easily diagnosed using the paceport of the 

pulmonary artery catheter (Figure 54) and should be considered a potential cause of 

hemodynamic instability, especially when TEE shows systolic right ventricular cavity 

obliteration. 

 

 

Figure 54 Hemodynamic and Doppler findings in dynamic RVOT obstruction 

A 68-year-old man underwent aortic valve replacement. He became hemodynamically 

unstable with right ventricular dysfunction and was put back on cardiopulmonary bypass.  

Inotropes were initiated. On the second weaning attempt, he developed severe right 

ventricular outflow tract (RVOT) obstruction confirmed with the paceport of the pulmonary 

artery catheter and through continuous-wave Doppler interrogation of the tricuspid 

regurgitant flow in a mid-oesophageal ventricular inflow-outflow view at 61º. The 

measured pressure gradient of the tricuspid regurgitant flow was 75 mmHg (with a right 

ventricular systolic pressure of 80 mmHg) and the pulmonary artery pressure (Ppa) was 

30/16 mmHg during the echocardiographic measurement. (EKG, electrocardiogram; Pa, 

arterial pressure; Prv, right ventricular pressure). (With permission of Denault et al. [38]) 
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In summary, the mechanism of hemodynamic instability is complex but can be 

understood through a specific approach based on hemodynamic and echocardiographic 

variables. Therefore, such measures are essential to the evaluation of hemodynamic 

instability in cardiac surgery. So far, no studies have measured hemodynamic and 

echocardiographic variables in consecutive patients undergoing valvular surgery and 

determined the mechanism of difficult separation from CPB. The mechanism of difficult 

separation from CPB is important to understand if the next step is to prevent it. 
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Abbreviations 

2D two-dimensional 

A dur duration of mitral inflow A-wave 

A peak late or atrial diastolic flow velocity  

ABC Airway-Breathing-Circulation 

AC aortic occlusion 

ACC/AHA  American College of Cardiology and American Heart Association  

ACE angiotensin converting enzyme 

ACS abdominal compartment syndrome 

Am atrial mitral annular velocity 

AML anterior mitral leaflet length 

AMP adenosine monophosphate 

ANCOVA  analysis of covariance 

ANOVA  analysis of variance 

Ao aorta 

AoV aortic valve 

AP arterial pressure 

APP abdominal perfusion pressure 

AR aortic regurgitation 

AR atrial reversal 

ASD  atrial septal defect 

At atrial tricuspid annular velocity 

AVR aortic valve replacement  

BART Blood Conservation Using Antifibrinolytics in a Randomized Trial  

BMI body mass index 

BP blood pressure 

BSA body surface area 



xv 

 

CABG coronary artery bypass grafting 

CAD coronary artery disease 

CARE Cardiac Anesthesia Risk Evaluation 

CASS Coronary Artery Surgery Study 

CBF cerebral blood flow 

CHF congestive heart failure 

CI cardiac index  

CI confidence interval 

CK creatinine kinase 

CO cardiac output 

COPD chronic obstructive pulmonary disease 

CPB cardiopulmonary bypass 

CTICU cardiothoracic intensive care unit 

CVD cerebrovascular disease 

CVP central venous pressure 

D diastolic 

DAP diastolic arterial pressure 

DPAP diastolic pulmonary arterial pressure 

DSB difficult separation from bypass 

DT deceleration time 

E early 

ECMO extra-corporeal membrane oxygenator 

EDA end-diastolic area 

EDV end-diastolic volume 

EF ejection fraction 

EKG electrocardiogram 

Em early mitral annular velocity 

EOA effective orifice area 

ESA end-systolic area 
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ESV end-systolic volume 

Et early tricuspid annular velocity 

ET ejection time 

FAC fractional area change 

Fem Femoral 

FRC functional residual capacity 

Gd gradient 

GEE generalized estimating equation 

HR heart rate 

HVF hepatic venous flow 

IABP intra-aortic balloon pump  

IAH intra-abdominal hypertension 

IAP intra-abdominal pressure 

ICU intensive care unit  

iEOA indexed effective orifice area 

IL interleukin 

iMil  Inhaled milrinone 

iNO inhaled nitric oxide 

iPGI2  inhaled prostacyclin 

IU international unit;  

IV intravenous 

IVC interior vena cava 

IVCT isovolumic contraction time 

IVRT isovolumic relaxation time 

LA left atrium 

LAA left atrial appendage 

LADt left atrial transverse dimension 

LAP left atrial pressure 

LCOS low cardiac output syndrome 
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LHV left hepatic vein 

LIJV left internal jugular vein 

LIMA left internal mammary artery 

LOF low output failure 

LUPV left upper pulmonary vein 

LV  left ventricle or left ventricular 

LVAD left ventricular assist device 

LVDD left ventricular diastolic dysfunction  

LVEDA left ventricular end-diastolic area  

LVEDP  left ventricular end-diastolic pressure 

LVEF  left ventricular ejection fraction 

LVESA left ventricular end-systolic area 

LVFAC left ventricular fractional area change  

LVOT left ventricular outflow tract  

LVOTO left ventricular outflow tract obstruction 

LVWMSI left ventricular wall motion score index 

MAP mean arterial pressure 

MAV mitral annular velocity 

MHI Montreal Heart Institute  

MI myocardial infarction 

MPAP mean pulmonary artery pressure 

MPI myocardial performance index 

MR mitral regurgitation 

MV mitral valve 

MVO2 mixed venous oxygen 

MVR mitral valve replacement 

NIH National Institute of Health  

NIRS near-infrared spectroscopy 

NO nitric oxide 
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NTG nitroglycerin 

NTP nitroprusside 

NYHA New York Heart Association 

OM obtuse marginal 

OR odds ratio 

OR operating room  

Pa arterial pressure 

PA pulmonary artery 

PAC pulmonary artery catheter 

Paf femoral arterial pressure 

PAF platelet activating factor 

PAP pulmonary artery pressure 

Par radial arterial pressure 

PCWP pulmonary capillary wedge pressure 

PEEP positive end-expiratory pressure 

PFO patent foramen ovale 

PGE1 prostaglandin E1 

PGI2 prostacyclin  

PH pulmonary hypertension 

PML posterior mitral leaflet length 

Pms mean systemic pressure 

PMV prosthetic mitral valve 

PN pseudonormal 

Ppa pulmonary artery pressure 

PPM patient-prosthesis mismatch 

Pra right atrial pressure 

Prv  right ventricular pressure 

PVF pulmonary venous flow 

PVR pulmonary vascular resistance 
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PVRI indexed pulmonary vascular resistance  

PW pulsed-wave 

QHLI Quebec Heart and Lung Institute 

Ra arterial resistance 

RA relaxation abnormality 

RA right atrium 

Rad Radial  

RADt right atrial transverse diameter 

RBC red blood cell;  

RCA right coronary artery 

RCT randomized controlled trial 

ROC receiver operating characteristics 

RPA right pulmonary artery 

Rrv resistance to venous return 

RV  residual volume 

RV right ventricle or right ventricular 

RVAD right ventricular assist device 

RVDD right ventricular diastolic dysfunction 

RVED right ventricular end-diastolic volume 

RVEDA right ventricular end-diastolic area 

RVEF right ventricular ejection fraction 

RVES right ventricular end-systolic volume 

RVESA right ventricular end-systolic area  

RVFAC right ventricular fractional area change, 

RVMPI right ventricular myocardial performance index 

RVOT right ventricular outflow tract  

RVOTO right ventricular outflow tract obstruction 

Rvr resistance to venous return 

RWMA regional wall motion abnormalities 
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RWMSI regional wall motion score index 

S systolic 

SAM systolic anterior motion 

SAP systemic arterial pressure 

ScO2 cerebral oxygen saturation 

SCV subclavian vein 

SD standard deviation;  

SE standard error 

Sec seconds 

SLCL septal to leaflet coaptation length 

Sm systolic mitral annular velocity 

SPAP systolic pulmonary artery pressure 

St systolic tricuspid annular velocity 

STS Society of Thoracic Surgeons 

SV stroke volume 

SVC superior vena cava 

SVR systemic vascular resistance 

SVRI indexed systemic vascular resistance 

TAPSE tricuspid annular plane systolic excursion 

TAV tricuspid annular velocity 

TD thermodilution 

TDI tissue Doppler imaging 

TEE transesophageal echocardiography 

TLC total lung capacity 

TMF transmitral flow 

TNF tumor necrosis factor 

TO2 oxygen transport 

TTF transtricuspid flow 

TV tricuspid valve 
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UK United Kingdom 

USA United States of America 

VAD ventricular assist device 

Vp velocity of propagation 

VR venous return 


