

Indications

"Standby" pacing

- •Setting of acute MI with:
 - Symptomatic sinus node dysfunction
 - Mobitz type II second-degree heart block
- Third degree heart block
- Newly acquired left, right, or alternating BBB or bi-fascicular block

-Before electrical cardioversion of a patient with SSS \underline{or} with high level of dependency to a permanent pacemaker

Indications

"Standby" pacing

•Setting of acute MI with:

- Symptomatic sinus node dysfunction
- Mobitz type II second-degree heart block
- Third degree heart block
- Newly acquired left, right, or alternating BBB or bi-fascicular block

-Before electrical cardioversion of a patient with SSS \underline{or} with high level of dependency to a permanent pacemaker

•Prior to permanent pacemaker implantation

Indications

"Standby" pacing

•Setting of acute MI with:

- Symptomatic sinus node dysfunction
- Mobitz type II second-degree heart block
- Third degree heart block
- Newly acquired left, right, or alternating BBB or bi-fascicular block

•Before electrical cardioversion of a patient with SSS or with high level of dependency to a permanent pacemaker

•Prior to permanent pacemaker implantation

•Prior to PA cath insertion if underlying LBBB

Types of temporary cardiac pacing

- Transcutaneous
 - Transvenous
 - Epicardial
- Transesophageal
 - Transthoracic
 - Mechanical

Types of temporary cardiac pacing

- Transcutaneous
- Transvenous
- Epicardial
- Transesophageal
- Transthoracic
- Mechanical

Transcutaneous cardiac pacing

• Dr.Paul Zoll, 1952

• Dr.Paul Zoll, 1952

- Technique abandoned in the 1960's
- Reintroduced in clinical practice in the 1980's

Transcutaneous cardiac pacing

 To be used for short intervals <u>as a bridge</u> until transvenous pacing can be initiated or until the underlying cause of the bradyarrhythmia can be reversed

Transcutaneous cardiac pacing

Surface patches

Transcutaneous cardiac pacing

Surface patches

- Large, self-adhesive electrodes (area=8cm in diameter)
- Non-metallic
- Impregnated with conductive gel at the electrical surface with the skin

Transcutaneous cardiac pacing

Surface patches placement

- Thoroughly clean skin with alcohol
- Remove any skin patches (nitro, nicotine,...)
- Do not shave

Transcutaneous cardiac pacing

Surface patches placement

- Thoroughly clean skin with alcohol
- Remove any skin patches (nitro, nicotine,...)
- Do not shave

The cathodal (negative) electrode must always be positioned anteriorly

Pulse generator settings

Transcutaneous cardiac pacing

Pulse generator settings

- Rate (30-180 BPM)
- Current (0-200 mA)
- Demand / Asynch mode

Transcutaneous cardiac pacing

Pulse generator settings

- Rate (30-180 BPM)
- Current (0-200 mA)
- Demand / Asynch mode
- ** Know the different pacemaker units in the hospital

Transcutaneous cardiac pacing

Pulse generator settings

- Rate (30-180 BPM)
- Current (0-200 mA)
- Demand / Asynch mode
- ** Know the different pacemaker units in the hospital

LIFEPAK 9

• Normally, capture is obtained at 40-80 mA

Transcutaneous cardiac pacing

- Normally, capture is obtained at 40-80 mA
- No clear correlation between pacing threshold and:

- Age

- Body weight
- Body surface area

Transcutaneous cardiac pacing

May see increased pacing threshold with:

Transcutaneous cardiac pacing

May see increased pacing threshold with:

- Suboptimal lead position (over bone; negative electrode placed posteriorly)

May see increased pacing threshold with:

- Suboptimal lead position (over bone; negative electrode placed posteriorly)
- Poor skin-electrode contact

Transcutaneous cardiac pacing

May see increased pacing threshold with:

- Suboptimal lead position (over bone; negative electrode placed posteriorly)
- Poor skin-electrode contact
- Following intra-thoracic and cardiac surgery

Transcutaneous cardiac pacing

- May see increased pacing threshold with:
- Suboptimal lead position (over bone; negative electrode placed posteriorly)
- Poor skin-electrode contact
- Following intra-thoracic and cardiac surgery
- Emphysema

Transcutaneous cardiac pacing

May see increased pacing threshold with:

- Suboptimal lead position (over bone; negative electrode placed posteriorly)
- Poor skin-electrode contact
- Following intra-thoracic and cardiac surgery
- Emphysema
- Pericardial effusion

Transcutaneous cardiac pacing

May see increased pacing threshold with:

- Suboptimal lead position (over bone; negative electrode placed posteriorly)
- Poor skin-electrode contact
- Following intra-thoracic and cardiac surgery
- Emphysema
- Pericardial effusion
- Positive pressure ventilation

Transcutaneous cardiac pacing

May see increased pacing threshold with:

- Suboptimal lead position (over bone; negative electrode placed posteriorly)
- Poor skin-electrode contact
- Following intra-thoracic and cardiac surgery
- Emphysema
- Pericardial effusion
- Positive pressure ventilation
- Pharmacologic interventions (eg. A.A.)

May see increased pacing threshold with:

- Suboptimal lead position (over bone; negative electrode placed posteriorly)
- Poor skin-electrode contact
- Following intra-thoracic and cardiac surgery
- Emphysema
- Pericardial effusion
- Positive pressure ventilation
- Pharmacologic interventions (eg. A.A.)
- Hypoxia / ischemia / shock / acidosis / hyperkalemia

Transcutaneous cardiac pacing

May see increased pacing threshold with:

- Suboptimal lead position (over bone; negative electrode placed posteriorly)
- Poor skin-electrode contact
- Following intra-thoracic and cardiac surgery
- Emphysema
- Pericardial effusion
- Positive pressure ventilation
- Pharmacologic interventions (eg. A.A.)
- Hypoxia / ischemia / shock / acidosis / hyperkalemia
- After electrical cardioversion / defibrillation

Transcutaneous cardiac pacing

May see increased pacing threshold with:

- Suboptimal lead position (over bone; negative electrode placed posteriorly)
- Poor skin-electrode contact
- Following intra-thoracic and cardiac surgery
- Emphysema
- Pericardial effusion
- Positive pressure ventilation
- Pharmacologic interventions (eg. A.A.)
- Hypoxia / ischemia / shock / acidosis / hyperkalemia
- After electrical cardioversion / defibrillation
- After prolonged resuscitation / arrest

Transcutaneous cardiac pacing

Initiation of pacing

- Always use maximal current ouput and Asynch. mode
 - initially in emergent bradyasystolic situations

Transcutaneous cardiac pacing

Initiation of pacing

- Always use maximal current ouput and Asynch. mode initially in emergent bradyasystolic situations
- Adjust current ouput approx. 10 mA above threshold

Transcutaneous cardiac pacing

Initiation of pacing

- Always use maximal current ouput and Asynch. mode initially in emergent bradyasystolic situations
- Adjust current ouput approx. 10 mA above threshold
- Sedation / analgesia as needed

Initiation of pacing

- Always use maximal current ouput and Asynch. mode initially in emergent bradyasystolic situations
- Adjust current ouput approx. 10 mA above threshold
- Sedation / analgesia as needed
- Confirm capture by:

Transcutaneous cardiac pacing

Initiation of pacing

- Always use maximal current ouput and Asynch. mode initially in emergent bradyasystolic situations
- Adjust current ouput approx. 10 mA above threshold
- Sedation / analgesia as needed
- Confirm capture by:
 - > Pulse palpation
 - > Doppler
 - > Arterial line tracing

	Transcutaneous cardiac pacing	
Pittfalls		

Transcutaneous cardiac pacing

Pittfalls

Failure to recognize the presence of underlying treatable VF

Transcutaneous cardiac pacing

Pittfalls

- Failure to recognize the presence of underlying treatable VF
- Failure to recognize that the pacemaker is not capturing

Transcutaneous cardiac pacing

Potential complications

Transcutaneous cardiac pacing

Potential complications

- Pain
- Induction of arrhythmia (very rare)
- Tissue damage (very rare)

Transvenous endocardial cardiac pacing

 Utilizes intravenous catheter electrodes to stimulate atrial and/or ventricular myocardial tissue directly with electrical current pulses provided by an external generator.

Transvenous endocardial cardiac pacing

• Provides the most consistent and reliable means of temporary pacing

Transvenous endocardial cardiac pacing

- Provides the most consistent and reliable means of temporary pacing
- Can permit atrial and/or ventricular pacing
- Stable system
- Well tolerated
- Takes more time and skills to insert
- Significant potential complications

Transvenous endocardial cardiac pacing

- Offers different modes of pacing
- <u>4-letter coding system</u>

- Offers different modes of pacing
- <u>4-letter coding system</u>
 - 1st letter: - 2nd letter:
 -
 - 3rd letter:

Transvenous endocardial cardiac pacing

- Offers different modes of pacing
- <u>4-letter coding system</u>
 - 1st letter: chamber *paced* (V, A, D)
 - 2nd letter:
 - 3rd letter:

Transvenous endocardial cardiac pacing

- Offers different modes of pacing
- 4-letter coding system
 - 1st letter: chamber <u>paced</u> (V, A, D)
 - 2nd letter: chamber <u>sensed</u> (V, A, D)

- 3rd letter:

Transvenous endocardial cardiac pacing

- Offers different modes of pacing
- <u>4-letter coding system</u>
 - 1st letter: chamber <u>paced</u> (V, A, D)
 - 2nd letter: chamber sensed (V, A, D)
 - 3rd letter: mode of response when an event is sensed
 - I = inhibited
 - T= triggered
 - D= Inhibited or triggered
 - O= neither inhibited, nor triggered

Transvenous endocardial cardiac pacing

- Offers different modes of pacing
- 4-letter coding system
 - 1st letter: chamber <u>paced</u> (V, A, D)
 - 2nd letter: chamber sensed (V, A, D)
 - 3rd letter: mode of response when an event is sensed
 - I = inhibited
 - T= triggered
 - D= Inhibited or triggered
 - O= neither inhibited, nor triggered
 - 4th letter: "R" = " rate-responsiveness" (only with permanent system)

Transvenous endocardial cardiac pacing

- Different types of catheter electrodes
- 3-6 Fr in diameter

Different types of catheter electrodes

• 3-6 Fr in diameter	** match adequate introducer size **

Transvenous endocardial cardiac pacing

Different types of catheter electrodes

- 3-6 Fr in diameter
 ** match adequate introducer size **
- Platinum-coated electrodes
- Made of relatively rigid woven polyester fabric <u>or</u> flexible plastic
- Tip may be straight or J-curved
- May be equipped with an inflatable balloon at tip
- Electrode may be unipolar or bipolar

Transvenous endocardial cardiac pacing

Unipolar system characteristics

Unipolar system characteristics

- Simple, less sophisticated electrode
- Dipole is between tip of electrode and generator
- Higher risk of oversensing
- Larger spike on EKG tracing

Transvenous endocardial cardiac pacing

Bipolar system characteristics

Transvenous endocardial cardiac pacing

Bipolar system characteristics

- More complex electrode
- Somewhat larger than unipolar electrode
- Dipole is at tip of electrode
- Lower risk of oversensing
- Small spike on EKG tracing
- Higher risk of electrode failure

Conversion of a bipolar to a unipolar pacing system

• Connect the distal or proximal electrode to the negative pole of the pacemaker

Conversion of a bipolar to a unipolar pacing system

- Connect the distal or proximal electrode to the negative pole of the pacemaker
- Connect the positive pole to a wire suture, needle or metal plate in firm contact with the skin of the patient.

Conversion of a bipolar to a unipolar pacing system

- Connect the distal or proximal electrode to the negative pole of the pacemaker
- Connect the positive pole to a wire suture, needle or metal plate in firm contact with the skin of the patient.
- Cover the tip of the unused electrode with a rubber glove (to avoid an accidental short-circuit in the pacing circuit)

Conversion of a bipolar to a unipolar pacing system

Conversion of a bipolar to a unipolar pacing system

Transvenous endocardial cardiac pacing

 Electrode should be inserted <u>after</u> transcutaneous pacing has been established

- Electrode should be inserted <u>after</u> transcutaneous pacing has been established
- Blind insertion of rigid catheter should not be done
 use fluoroscopy

Transvenous endocardial cardiac pacing

- Electrode should be inserted <u>after</u> transcutaneous pacing has been established
- Blind insertion of rigid catheter should not be done
 use fluoroscopy
- Blind insertion should be done with soft, flow-directed catheter with inflatable balloon

Transvenous endocardial cardiac pacing

- Electrode should be inserted <u>after</u> transcutaneous pacing has been established
- Blind insertion of rigid catheter should not be done
 use fluoroscopy
- Blind insertion should be done with soft, flow-directed catheter with inflatable balloon
- · Best venous access in emergency situations:
 - Right internal jugular vein
 - Left sub-clavian vein

Transvenous endocardial cardiac pacing

Electrode placement my be guided by:

Transvenous endocardial cardiac pacing

Electrode placement my be guided by:

- Fluoroscopy / Echocardiography
- Endocardial EKG signal
- Surface EKG evidence of capture
- Pressure waves (PA cath. pacing system)

Pulse generator settings -Current (0.1-20 mA) -Rate (30-180 BPM) -Sensitivity (0.1mV- Asynch) -Demand / Asynch. Mode -Ventricular and/or atrial

Determination of the stimulation threshold ("capture")

• Make sure pacemaker generator is "off" initially

Transvenous endocardial cardiac pacing

Determination of the stimulation threshold ("capture")

- Make sure pacemaker generator is "off" initially
- Set rate at 10 BPM above intrinsic rate

Transvenous endocardial cardiac pacing

Determination of the stimulation threshold ("capture")

- Make sure pacemaker generator is "off" initially
- Set rate at 10 BPM above intrinsic rate
- Put on Demand mode and set sensitivity between 1,5 –3 mV

Transvenous endocardial cardiac pacing

Determination of the stimulation threshold ("capture")

- Make sure pacemaker generator is "off" initially
- Set rate at 10 BPM above intrinsic rate
- Put on Demand mode and set sensitivity between 1,5 –3 mV
- Set the Output current control at 5 mA and turn pacemaker generator "on"

- Determination of the stimulation threshold ("capture")
- Make sure pacemaker generator is "off" initially
- Set rate at 10 BPM above intrinsic rate
- Put on Demand mode and set sensitivity between 1,5 –3 mV
- Set the Output current control at 5 mA and turn pacemaker generator "on"
- Verify surface EKG (or pulse by Doppler / art.line) for 1:1 capture

Transvenous endocardial cardiac pacing

Determination of the stimulation threshold ("capture")

- Make sure pacemaker generator is "off" initially
- Set rate at 10 BPM above intrinsic rate
- Put on Demand mode and set sensitivity between 1,5 –3 mV
- Set the Output current control at 5 mA and turn pacemaker generator "on"
- Verify surface EKG (or pulse by Doppler / art.line) for 1:1 capture
- Gradually decrease output current until 1:1 capture is lost

Transvenous endocardial cardiac pacing

- Determination of the stimulation threshold ("capture")
- Gradually increase the current Output to find the threshold at which
 capture is regained (= the stimulation threshold)

Transvenous endocardial cardiac pacing

Determination of the stimulation threshold ("capture")

- Gradually increase the current Output to find the threshold at which
 capture is regained (= the stimulation threshold)
- Set final Output current at 2-3X the stimulation threshold

Transvenous endocardial cardiac pacing

Determination of the stimulation threshold ("capture")

ventricle 0.5-1.0 mA

atrium < 1.0 mA

Determination of the stimulation threshold ("capture")

ventricle 0.5-1.0 mA

Normal thresholds atrium < 1.0 mA

In <u>emergent brady-asystolic situations</u>, set pacemaker on "Asynch", rate at 80-100 BPM and maximal Output current. Once capture is achieved, re-adjust the settings adequately.

Transvenous endocardial cardiac pacing

Determination of the sensitivity threshold

• Set rate lower than the intrinsic rhythm

Transvenous endocardial cardiac pacing

- Determination of the sensitivity threshold
- Set rate lower than the intrinsic rhythm
- Place in Demand mode

Transvenous endocardial cardiac pacing

Determination of the sensitivity threshold

- Set rate lower than the intrinsic rhythm
- Place in Demand mode
- Gradually reduce sensitivity (increasing the mV scale) until pacing output occurs.

Transvenous endocardial cardiac pacing

Determination of the sensitivity threshold

- Set rate lower than the intrinsic rhythm
- Place in Demand mode
- Gradually reduce sensitivity (increasing the mV scale) until pacing output occurs.

ventricle > 6 mv Normal thresholds atrium > 1 mV

Transvenous endocardial cardiac pacing

Determination of the sensitivity threshold

- Adjust final sensitivity at 25-50% of the determined
 - threshold.

- ** Always have a functioning defibrillator unit close by when inserting and adjusting a transvenous pacemaker
- ** Perform daily threshold testing and paced 12-lead EKG

Transvenous endocardial cardiac pacing

Contra-indications to transvenous pacing :

Transvenous endocardial cardiac pacing

Contra-indications to transvenous pacing :

- Tricuspid valve mechanical prosthesis
- Existing endocarditis
- Infected endocardial pacemaker leads
- Sepsis / Bacteremia
- Ventricular arrhythmias due to dig. toxicity

Transvenous endocardial cardiac pacing

Adequate myocardial capture will depend on:

Transvenous endocardial cardiac pacing

Adequate myocardial capture will depend on:

- Stable catheter position
- Viability of the paced myocardial tissue
- Electrical integrity of the pacing system

Transvenous endocardial cardiac pacing Failure to capture (ventricle)

Most common cause of loss of capture is...

Transvenous endocardial cardiac pacing
Most common cause of loss of capture is...
Lead dislodgment

Transvenous endocardial cardiac pacing

Loss of capture

Transvenous endocardial cardiac pacing

Loss of capture

Catheter dislodgement / perforation

Loss of capture

- Catheter dislodgement / perforation
- Poor endocardial contact

Transvenous endocardial cardiac pacing

Loss of capture

- Catheter dislodgement / perforation
- Poor endocardial contact
- Local myocardial necrosis / fibrosis

Transvenous endocardial cardiac pacing

Loss of capture

- Catheter dislodgement / perforation
- Poor endocardial contact
- Local myocardial necrosis / fibrosis
- Local myocardial inflammation / edema

Transvenous endocardial cardiac pacing

Loss of capture

- Catheter dislodgement / perforation
- Poor endocardial contact
- Local myocardial necrosis / fibrosis
- Local myocardial inflammation / edema
- Hypoxia / Acidosis / electrolyte disturbance / drug effect (la and IC)

Transvenous endocardial cardiac pacing

Loss of capture

- Catheter dislodgement / perforation
- Poor endocardial contact
- Local myocardial necrosis / fibrosis
- Local myocardial inflammation / edema
- Hypoxia / Acidosis / electrolyte disturbance / drug effect (Ia and IC)
- Electrocautery / DC cardioversion damaging electrode or tissue interface

Transvenous endocardial cardiac pacing

Loss of capture

- Catheter dislodgement / perforation
- Poor endocardial contact
- Local myocardial necrosis / fibrosis
- Local myocardial inflammation / edema
- Hypoxia / Acidosis / electrolyte disturbance / drug effect (Ia and IC)
- Electrocautery / DC cardioversion damaging electrode or tissue interface
- Lead fracture

Loss of capture

- Catheter dislodgement / perforation
- Poor endocardial contact
- Local myocardial necrosis / fibrosis
- Local myocardial inflammation / edema
- Hypoxia / Acidosis / electrolyte disturbance / drug effect (Ia and IC)
- Electrocautery / DC cardioversion damaging electrode or tissue interface
- Lead fracture
- Generator malfunction / battery depletion

Transvenous endocardial cardiac pacing

Loss of capture

- Catheter dislodgement / perforation
- Poor endocardial contact
- Local myocardial necrosis / fibrosis
- Local myocardial inflammation / edema
- Hypoxia / Acidosis / electrolyte disturbance / drug effect (Ia and IC)
- Electrocautery / DC cardioversion damaging electrode or tissue interface
- Lead fracture
- Generator malfunction / battery depletion
- Unstable electrical connections

Undersensing

Undersensing

Lead dislodgment or perforation

Transvenous endocardial cardiac pacing

Undersensing

- Lead dislodgment or perforation
- Local tissue necrosis / fibrosis

Transvenous endocardial cardiac pacing

Undersensing

- Lead dislodgment or perforation
- Local tissue necrosis / fibrosis
- Lead fracture

Transvenous endocardial cardiac pacing

Undersensing

- Lead dislodgment or perforation
- Local tissue necrosis / fibrosis
- Lead fracture
- Electrocautery / DC current damaging electrode or tissue interface

Transvenous endocardial cardiac pacing

Undersensing

- Lead dislodgment or perforation
- Local tissue necrosis / fibrosis
- Lead fracture
- Electrocautery / DC current damaging electrode or tissue interface
- Generator malfunction

Transvenous endocardial cardiac pacing

<u>Undersensing</u>

- Lead dislodgment or perforation
- Local tissue necrosis / fibrosis
- Lead fracture
- Electrocautery / DC current damaging electrode or tissue interface
- Generator malfunction
- Unstable electrical connections

Oversensing (T waves)

Transvenous endocardial cardiac pacing Oversensing (myopotentials)

Transvenous endocardial cardiac pacing

Oversensing

Transvenous endocardial cardiac pacing

Oversensing

P-wave sensing

Transvenous endocardial cardiac pacing

Oversensing

- P-wave sensing
- T-wave sensing

Transvenous endocardial cardiac pacing

Oversensing

- P-wave sensing
- T-wave sensing
- Myopotential sensing

Oversensing

- P-wave sensing
- T-wave sensing
- Myopotential sensing
- Electromagnetic interference

Transvenous endocardial cardiac pacing

Oversensing

- P-wave sensing
- T-wave sensing
- Myopotential sensing
- Electromagnetic interference
- Intermittent electrical contacts, unstable connections, or lead fracture

Transvenous endocardial cardiac pacing

Complications

Transvenous endocardial cardiac pacing

Complications

• Arrhythmias

Transvenous endocardial cardiac pacing

Complications

- Arrhythmias
- Thromboembolic events
 ? necessity to anticoagulate

Transvenous endocardial cardiac pacing

Complications

- Arrhythmias
- Thromboembolic events ? necessity to anticoagulate
- Clinical infection / phlebitis

Complications

- Arrhythmias
- Thromboembolic events ? necessity to anticoagulate
- Clinical infection / phlebitis
- Bacteremia

Transvenous endocardial cardiac pacing

Complications

- Arrhythmias
- Thromboembolic events ? necessity to anticoagulate
- Clinical infection / phlebitis
- Bacteremia
- Myocardial perforation by pacing electrode

Transvenous endocardial cardiac pacing

Myocardial perforation by pacing electrode

Symptoms:

Transvenous endocardial cardiac pacing

Myocardial perforation by pacing electrode

Symptoms:

- Pericardial chest pain
- Shoulder pain
- Diaphragmatic pacing
- Skeletal muscle pacing
- Dyspnea, hypotension (if tamponade present)

Any problem with this paced EKG tracing ?

DDD pacemaker with RBB paced rhythm... Myocardial perforation by the ventricular lead

Transvenous endocardial cardiac pacing

Myocardial perforation by pacing electrode

Signs:

Myocardial perforation by pacing electrode

Signs:

- Pericardial rub
- Intercostal muscle or diaphragmatic pacing
- Failure to pace or sense
- New pericardial effusion / tamponade

Transvenous endocardial cardiac pacing

Myocardial perforation by pacing electrode

Transvenous endocardial cardiac pacing

Myocardial perforation by pacing electrode

CXR:

- Change in lead position
- Extra-cardiac location of tip
- "Fat pad" sign

Transvenous endocardial cardiac pacing

Myocardial perforation by pacing electrode
Surface EKG:

Transvenous endocardial cardiac pacing

Myocardial perforation by pacing electrode

Surface EKG:

- Change in paced QRS morphology and/or axis
- Failure to pace or sense
- Pericarditis pattern

	Failure to capture (myocardial perforation)		
^ <u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	nn		nm
			5/14/69
hy	hype	nyla	
°			5/23/69
	-		m

Other potential complications

Transvenous endocardial cardiac pacing

Other potential complications

- Knotting of catheter
- Tricuspid valve damage
- Induction of RBBB
- Phrenic nerve or diaphragmatic pacing *in the absence* of myocardial perforation

Epicardial pacing

• Temporary pacing wires passively fixed to the atrial and/or ventricular *epicardium* under direct visualisation at the time of cardiac surgery.

Epicardial pacing

- Temporary pacing wires passively fixed to the atrial and/or ventricular *epicardium* under direct visualisation at the time of cardiac surgery.
- Pacing wired usually paired
- Unipolar or bipolar leads
- Pacing and sensing thresholds tend to deteriorate progressively with time

Mechanical pacing

"Percussion" pacing:

Mechanical pacing

"Percussion" pacing:

• Involves the administration of sharp blows with the ulnar aspect of the fist to the mid to lower 2/3 of the patient's sternum.

Mechanical pacing

"Percussion" pacing:

- Involves the administration of sharp blows with the ulnar aspect of the fist to the mid to lower 2/3 of the patient's sternum.
- *Mech. of action:* Involves mechanical-electrical transduction properties of the cardiac tissue

Mechanical pacing

"Percussion" pacing:

- Involves the administration of sharp blows with the ulnar aspect of the fist to the mid to lower 2/3 of the patient's sternum.
- *Mech. of action:* Involves mechanical-electrical transduction properties of the cardiac tissue
- May precipitate ventricular fibrillation

A few more points...

• Malfunctioning AICD with repeated inappropriate firing ?

A few more points...

- Malfunctioning AICD with repeated inappropriate firing ?
- Need to defibrillate / cardiovert a patient with an implanted permanent pacemaker ?

A few more points...

- Malfunctioning AICD with repeated inappropriate firing ?
- Need to defibrillate / cardiovert a patient with an implanted permanent pacemaker ?
- How to check the capture of a permanent pacemaker ?

A few more points...

- Malfunctioning AICD with repeated inappropriate firing ?
- Need to defibrillate / cardiovert a patient with an implanted permanent pacemaker ?
- How to check the capture of a permanent pacemaker ?
- What does it mean if a permanent pacemaker has a slower pacing rate than the one originally programmed ?

A few more points...

- Malfunctioning AICD with repeated inappropriate firing ?
- Need to defibrillate / cardiovert a patient with an implanted permanent pacemaker ?
- How to check the capture of a permanent pacemaker ?
- What does it mean if a permanent pacemaker has a slower pacing rate than the one originally programmed ?
- Patient with a pacemaker going to the OR ?

Conclusion

• Know your pacemaker system !

Conclusion

- Know your pacemaker system !
- Transcutaneous pacing should always be used first in an emergency (on <u>Asynch</u> mode)

Conclusion

- Know your pacemaker system !
- Transcutaneous pacing should always be used first in an emergency (on <u>Asynch</u> mode)
- Use the appropriate introducer for transvenous leads

Conclusion

- Know your pacemaker system !
- Transcutaneous pacing should always be used first in an emergency (on <u>Asynch</u> mode)
- Use the appropriate introducer for transvenous leads
- Be comfortable with the basic troubleshooting (capture, oversensing, undersensing)

Conclusion

- Know your pacemaker system !
- Transcutaneous pacing should always be used first in an emergency (on <u>Asynch</u> mode)
- Use the appropriate introducer for transvenous leads
- Be comfortable with the basic troubleshooting (capture, oversensing, undersensing)
- Know your pacemaker system !

