

Traumatismes musculo-squelettiques

Mireille Nolet MD FRCPC
Anesthésiologue

CIUSSS NIM - HSCM

Mercredi - jour de garde - 16h00...

- Le TTL (*trauma team leader*) de garde vous appelle pour vous parler d'un patient en route...
- F 16 ans, pas d'ATCD, pas d'allergie. Frappée par moto en perte de contrôle à 100 km
- Arrêt cardiaque x 20 minutes pré-hospitalier

Évaluation primaire

- A: Combitubée en préhospitalier. Intubée par l'urgentologue. Collet cervical en place.
- B: SatO₂ ??% (mauvais signal). Pas d'évidence de trauma thoracique grossier. FAST poumon normal.
- C: RCS avec réanimation volémique (PTM). TA 70/50 pouls 150. Multiples accès IV gros calibres
 - FAST: Présence de liquide libre intra-abdominal. Pas d'épanchement péricardique ou pleural significatif.
 - Suspi \circ cion fracture bassin: pelvic binder mis en place en préhospitalier.
- D: Glasgow 3 avant intubation sans sédatif. Pupilles égales 3 mm.
- E: Pas d'évidence de fracture os longs. Saignement 2nd abrasions multiples.

Évaluation primaire

A: Airway OK. Collet en place.

B: Pas d'évidence de trauma thoracique.

C: TA 70/50, pouls 150. PTM en cours. FAST abdo + et fracture bassin suspectée.

D: Glasgow 3

E: Pas de fracture os longs.
Abrasions multiples.

- Quel est le principal problème?
 - Choc hémorragique (ad preuve du contraire)
- Diagnostic différentiel?
 - Thorax
 - **Abdomen**
 - **Bassin et rétropéritoine**
 - Os longs (fémur)
 - Saignement externe (fracture ouverte, quasi-amputation)

La scène se poursuit...

Le résident d'orthopédie veut ouvrir le *pelvic binder* pour confirmer l'instabilité du bassin.

Est-ce une conduite appropriée?

Comment fait-on le diagnostic de fracture instable du bassin lors de l'évaluation primaire?

Fracture du bassin

La mise en tension du bassin peut aggraver l'instabilité hémodynamique, donc n'est pas indiquée lors de l'évaluation primaire.

- Maintenir un haut degré de suspicion si:
 - Instabilité hémodynamique
 - Mécanisme haute énergie
 - Signes cliniques
 - Asymétrie MI (longueur ou rotation)
 - Contusion/gonflement des flancs ou des fesses
 - Sang a/n urètre, vagin, hématome périné
 - Palpation os lors TR
 - Déficit neuro a/n MI

La scène se poursuit...

Après discussion avec le TTL, et considérant la grande instabilité HD de la patiente, le chirurgien traumatólogue de garde annonce qu'il veut procéder à une laparotomie d'urgence.

Est-ce une conduite appropriée?

Quelles sont les priorités de traitement à cette étape-ci?

INDICATIONS FOR LAPAROTOMY

Surgical judgment is required to determine the timing and need for laparotomy (■ **FIGURE 5-7**). The following indications are commonly used to facilitate the decision-making process in this regard:

- Blunt abdominal trauma with hypotension, with a positive FAST or clinical evidence of intraperitoneal bleeding, or without another source of bleeding
- Hypotension with an abdominal wound that penetrates the anterior fascia
- Gunshot wounds that traverse the peritoneal cavity
- Evisceration
- Bleeding from the stomach, rectum, or genitourinary tract following penetrating trauma
- Peritonitis
- Free air, retroperitoneal air, or rupture of the hemidiaphragm
- Contrast-enhanced CT that demonstrates ruptured gastrointestinal tract, intraperitoneal bladder injury, renal pedicle injury, or severe visceral parenchymal injury after blunt or penetrating trauma

« The treatment of bleeding
is to stop the bleed... »

Damage Control Resuscitation

HEMORRHAGE is the leading cause of preventable death

DO YOUR PART TO CONTROL IT

RECOGNIZE IT

Injury Pattern

- ✓ Amputations
- ✓ Pelvic injury
- ✓ Penetrating chest/abd

eFAST

- ✓ 2 regions +

Data

- ✓ SBP < 100
- ✓ HR > 100
- ✓ HCT < 32
- ✓ pH < 7.25
- ✓ Lactate > 2.5
- ✓ INR > 1.5
- ✓ Base Deficit > 6

STOP IT

- ✓ Tourniquets
- ✓ Hemostatic dressing
- ✓ Direct pressure
- ✓ Junctional tourniquets
- ✓ TXA 2gms
- ✓ Appropriate surgical care ASAP (<1 hr)

REPLACE IT

- ✓ NO CRYSTALLOID
- ✓ NO HEXTEND
- ✓ LTOWB
- ✓ WFWB
- ✓ Plasma: RBC (1:1:1)
- ✓ Warmed
- ✓ TXA (< 3 hrs)
- ✓ Calcium
 - 1 gm Calcium IV/IO
 - After 1st unit
 - Then every 4th unit

- 1st Fluid is Blood
- Whole Blood

OR

- Plasma:RBC:Plts:Cryo(1:1:1:1)
- TXA given
- Calcium given

Clinical tips based on the Damage Control Resuscitation Clinical Practice Guideline (CPG) published by the Joint Trauma System (JTS).

JTS CPGs : [HTTPS://JTS.HEALTH.MIL/INDEX.CFM/PL_CPGS/CPGS](https://jts.health.mil/index.cfm/pl_cpgs/cpgs)

This document highlights updates to the Damage Control Resuscitation (DCR) Clinical Practice Guideline.

Triage / Rapid Assessment	Goal	Updated Guidance	Actions
	<p>To reduce mortality due to hemorrhage, rapidly recognize the need for early DCR and initiate early hemorrhage control and blood transfusion as close to time-of-injury as possible.</p>	<p>Maintain a target Systolic Blood Pressure (SBP) for DCR at 100 mmHg (100-110mmHg if TBI is presumed) when resuscitating with blood products.</p>	<ul style="list-style-type: none"> Triage: Identify severe injury patterns requiring early hemorrhage control and blood transfusion. Initiate Rapid Casualty Assessment Assess for signs of hemorrhagic shock: <ul style="list-style-type: none"> - SBP < 100 mmHg - Pulse > 100 bpm - Physiologic signs of shock - Hematocrit < 32% - pH < 7.25 - Clinical signs of coagulopathy
	<p>To monitor the risk of coagulopathy during massive transfusion, assess International Normalized Ratio (INR).</p>	<p>Monitor International Normalized Ratio (INR) > 1.5 indicating risk for coagulopathy during massive transfusion.</p>	<ul style="list-style-type: none"> Limit use of crystalloids Obtain baseline INR level testing as early as possible and monitor during resuscitation. Assess risk of massive transfusion: <ul style="list-style-type: none"> - >2 regions positive on FAST scan - Lactate concentration on admission >2.5 - Admission INR \geq 1.5 - Base Deficit > 6 mEq/L
	<p>To stop or reduce hemorrhage as close to time-of-injury as possible.</p>	<p>Utilize Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) as an option for the temporary control of non-compressible torso hemorrhage.</p>	<p>Apply:</p> <ul style="list-style-type: none"> • tourniquets, • pressure bandages, • hemostatic dressings, and <p>assist with REBOA if assigned to a designated resuscitation team.</p>

To treat and reverse hemorrhagic shock, provide warm whole blood as close to the time-of-injury as possible.

Prioritize using Low Titer O Whole Blood (LTOWB) as the **fluid of choice** for DCR.

Administer DCR fluids from most to least preferred:

1. Whole Blood (FDA-approved LTOWB preferred)
2. Plasma, platelets, red blood cells (RBCs), and CRYO in a 1:1:1:1 ratio
3. Whole blood in a recently tested donor
4. Plasma and RBCs in a 1:1 ratio
5. Plasma or RBCs alone

NOTES:

- Warm fluids to 37°C/98.6°F with approved devices to prevent hypothermia.
- Consider transfusion during transport to ensure rapid transfer to a surgical team

To reduce mortality, fibrinolysis, and stabilize clot, administer TXA IV/IO within 3 HOURS of injury for casualties at high risk of hemorrhagic shock.

Consider administering undiluted TXA by slow IV push (over 1 minute) is acceptable **ONLY** if supplies or tactical situation prevents providing a diluted infusion.

- Administer TXA 2g IV/IO in 100mL NS over 1 minute within 3 HOURS of injury
-

NOTES: Rapid TXA IV push may cause hypotension.

To prevent hypocalcemia related to massive transfusion, monitor ionized calcium. Administer calcium early.

Provide IV/IO calcium to all hemorrhagic shock patients whenever blood transfusion occurs during or immediately after first unit of blood.

- 1g calcium IV/IO immediately after first blood unit transfused, then again after every four units keeping ionized calcium above 1.2 mmol/L

NOTES: Calcium gluconate is preferred for peripheral IV administration.

DISCONTINUE USE for DCR:

- Hydroxyethyl starch (Hextend, Hespan)
- Recombinant human activated factor VII (rhFVIIa)

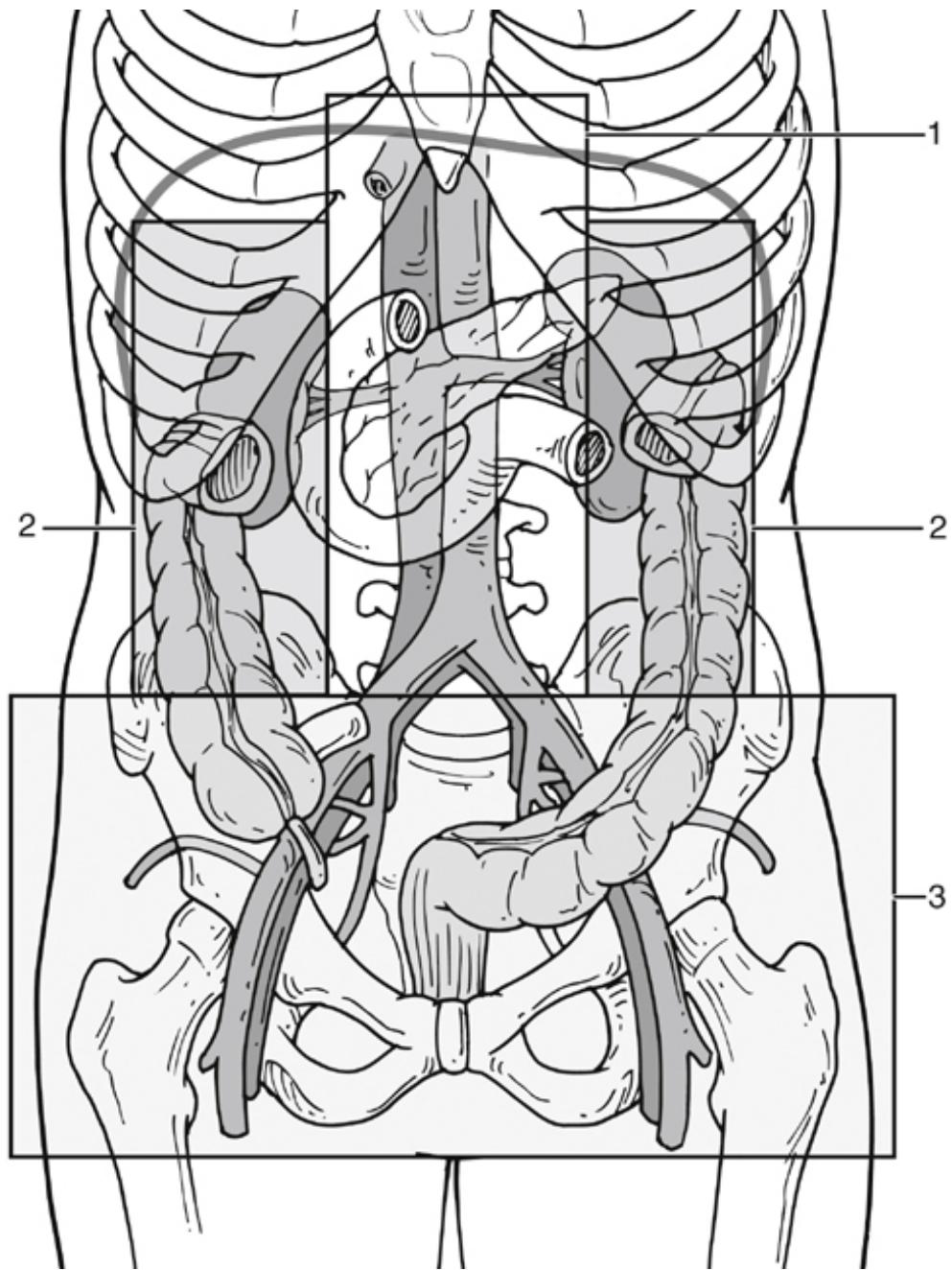
Prise en charge anesthésique

- Favoriser le transfert au bloc opératoire dans les meilleurs délais et conditions (communication, leadership anesthésique).
- Poursuivre *Damage Control Resuscitation*
 - Cible HD variable
 - Indice de risque de PTM

TABLE 2. Scoring Systems to Predict Massive Transfusion

Score	Components of Score	Prediction Accuracy
MTS	SBP <90 mm Hg HR ≥120 bpm FAST positive Penetrating mechanism Base deficit ≥6 INR ≥1.5 Hemoglobin <11 g/dL	MTS >1: sensitivity, 93%; specificity, 20% MTS >2: sensitivity, 70%; specificity, 67% MTS >3: sensitivity, 40%; specificity, 87%
ABC score	Penetrating mechanism = 1 FAST positive = 1 SBP ≤90 mm Hg = 1 HR ≥120 bpm = 1	ABC score ≥2: sensitivity, 69%; specificity, 82%
RABT score	Penetrating = 1 FAST positive = 1 Shock index >1 = 1 Presence of pelvic fracture = 1	RABT score ≥2: sensitivity, 78%; specificity, 91%
TASH score	SBP <100 mm Hg = 4; SBP 100–120 mm Hg = 1 Heart rate >120 bpm = 3 FAST positive = 3 Hemoglobin: <7 g/dL = 8 <9 g/dL = 6 <10 g/dL = 4 <11 g/dL = 3 <12 g/dL = 2 Base deficit: <10 = 4 <6 = 3 <2 = 1 Extremity or pelvic fractures: AIS score 3 or 4 = 3 AIS score 5 = 6 Male sex = 1	TASH score: sensitivity, 68%; specificity, 82% Using a logistic function, the TASH score is transformed into the probability of an MT: TASH score <9 points, <5% MT TASH score ≥16 points, >50% MT TASH score ≥27 points, 100% MT
mTICCS	Severity: trauma activation = 2 SBP <90 mm Hg once = 5 SBP always >90 mm Hg = 0 Extent of significant injuries: Head/neck = 1 Upper extremity = 1 Lower extremity = 1 Torso = 2 Abdomen = 2 Pelvis = 2 Total possible score, 2–16	mTICCS: sensitivity, 78%; specificity, 74%

ABC, Assessment of Blood Consumption; bpm, beats per minute; mTICCS, Modified Trauma-Induced Coagulopathy Clinical Score; MTS, Massive Transfusion Score; RABT, Revised Assessment of Bleeding and Transfusion; TASH, Trauma-Associated Severe Hemorrhage.


La scène se poursuit...

Le transfert en SOP est immédiat et la laparotomie est rapidement faite.

Il n'y a pas de saignement intraabdominal actif significatif. Le chirurgien note un important hématome du rétropéritoine.

Quel est l'origine de cet hématome et comment cesser le saignement?

Zone 1 centrale

Doit être exploré.

Atteinte vasculaire majeure,
reins, uretères, pancréas,
duodénum, colon.

Zone 2 latérales

À explorer si progressif.

Rein le plus souvent à l'origine
du saignement.

Zone 3 pelvienne:

SHOULD NOT BE EXPLORED.

Pelvic fracture-related hypotension: A review of contemporary adjuncts for hemorrhage control

Joseph J. DuBose, MD, FACS, FCCM, FSVS, Clay Cothren Burlew, MD, Bellal Joseph, MD, Meghan Keville, MD, Melike Harfouche, MD, Jonathan Morrison, MD, PhD, Charles J. Fox, MD, Jennifer Mooney, MD, Robert O'Toole, MD, Gerard Slobogean, MD, Lucas S. Marchand, MD, Demetrios Demetriades, MD, Nicole L. Werner, MD, Elizabeth Benjamin, MD, and Todd Costantini, MD, *Baltimore, Maryland*

- Pelvic binder
- Fixation externe
- REBOA
- Pre peritoneal packing
- Angio embolisation
- Ligature artères iliaques externes

J Trauma Acute Care Surg
Volume 91, Number 4

Pelvic binder

A

B

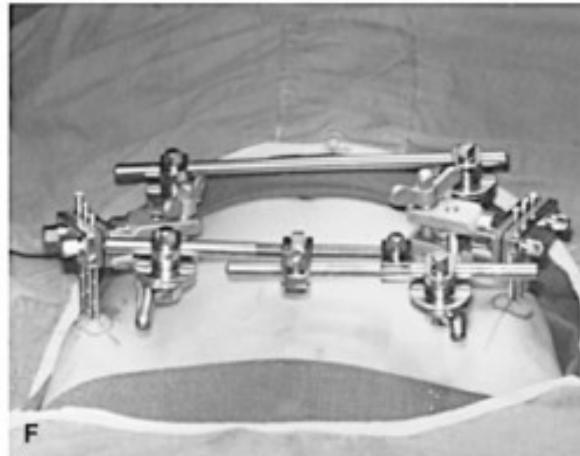
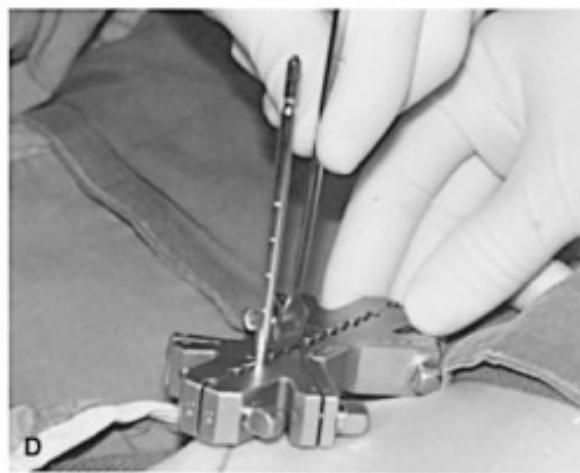
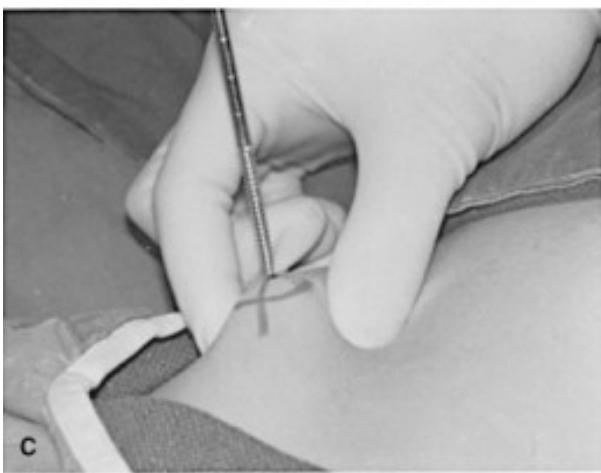
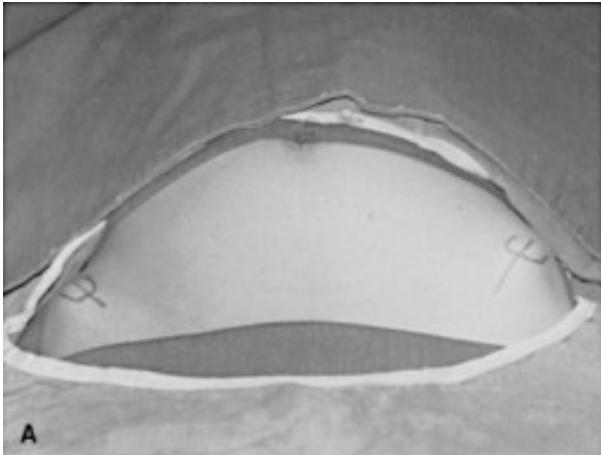
Pelvic binder

Comment installe-t-on un *pelvic binder*?

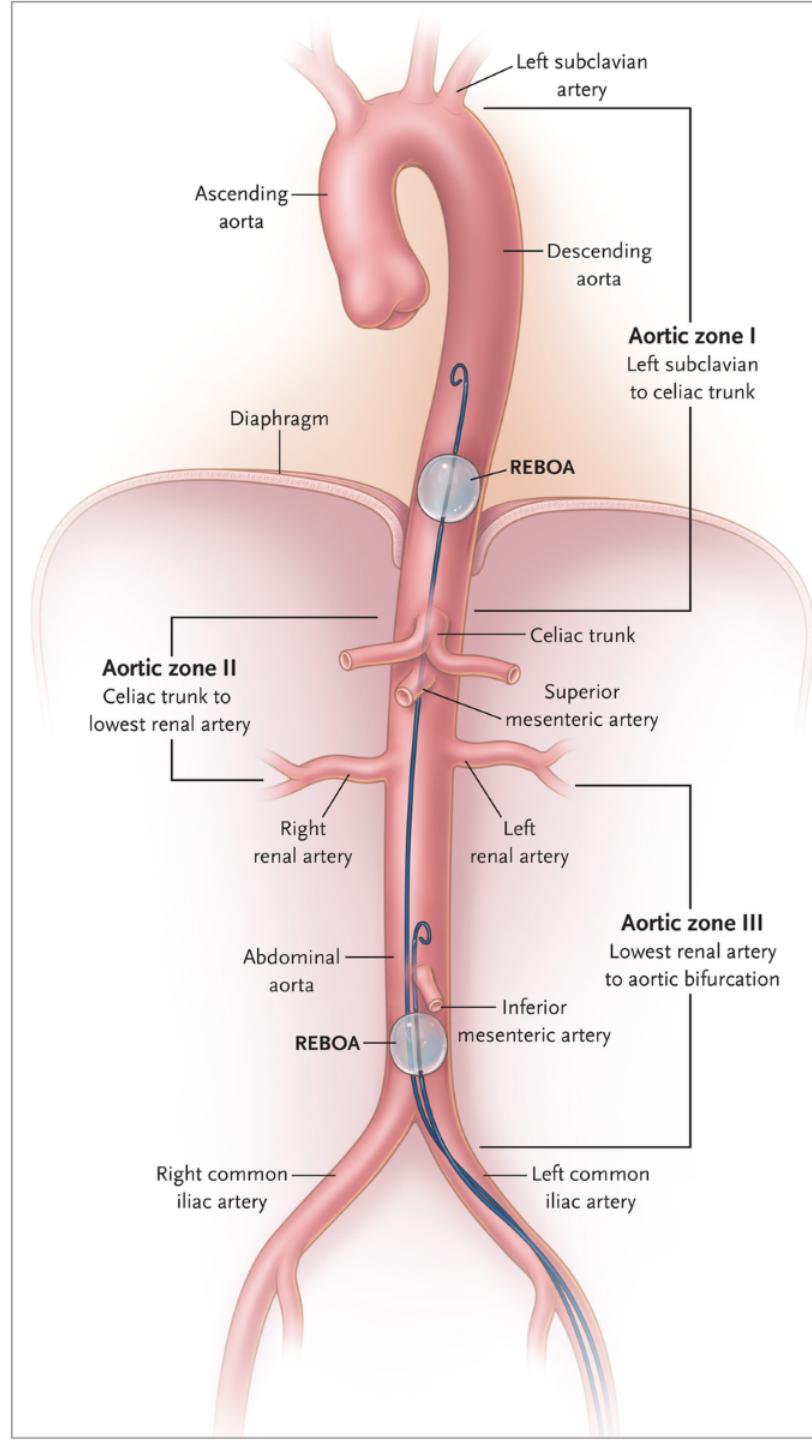
- 1. Identifier les grands trochanters.**
- 2. Appliquer rotation interne au niveau des membres inférieurs pour opposer cheville, pied et gros orteils. Fixer.**
- 3. Glisser le binder sous les genoux et diriger vers les hanches jusqu'au niveau des grands trochanters avec un mouvement de gauche à droite.**
- 4. Refermer.**

Pelvic binder

- Réduction du saignement en stabilisant le bassin, diminuant le volume de l'hématome et en favorisant la formation d'un caillot
- Évidence contradictoire sur la réduction des transfusions et l'amélioration de la stabilité HD





Avantages	Inconvénients
Facilité et rapidité installation	40-50% sont mal positionnés, trop haut
Pas de cas rapporté « sur réduction » avec dommage	Risque de nécrose cutanée sous-jacente si utilisation prolongée (plus de 24 h)
	Risque de faux négatif : fracture bien réduite, donc non détectable au RX
	Accès vasculaire fémoral difficile (plus facile avec couverture)

Fixateur externe



- Même mécanisme que le pelvic binder: réduit la mobilité du bassin et le volume de bassin.

Avantages	Inconvénients
Accès non obstrué vaisseaux fémoraux. Origine saignement est artérielle dans 15% des cas. Accès pour REBOA et embolisation est important.	Abdomen, PPP, aines vraiment accessibles?
Peut être laissé en place longtemps.	Installation au bloc opératoire (?)

Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA)

REBOA

- Nos connaissances proviennent de bases données
 - L'utilisation du REBOA peut faciliter RCS ou améliorer la stabilité HD, pour permettre un transport-transfert vers traitement définitif.
 - Absence approche standardisée. Plus d'études nécessaires pour identifier le rôle optimal.

Avantages	Inconvénients
Mesure de stabilisation HD, <i>bridge</i> , en route vers un traitement définitif	Expertise requise. Un haut volume réduit les complications.
	Peut être <i>time consuming</i>
	Risques associés reperfusion
	Risques associés technique (dommage vasculaire, ischémie MI)

Emergency Department Resuscitative Endovascular Balloon Occlusion of the Aorta in Trauma Patients With Exsanguinating Hemorrhage

The UK-REBOA Randomized Clinical Trial

Table 2. Primary and Secondary Outcomes

	REBOA and standard care (n = 46)	Standard care alone (n = 44)	Absolute difference (95% CrI), %	Effect estimate (95% CrI)	Posterior probability of OR >1, % ^a
Primary outcome					
All-cause mortality at 90 d, No./total (%)	25/46 (54)	18/43 (42) ^b	11.3 (-8.1 to 30.1)	OR, 1.58 (0.72 to 3.52)	86.9
Secondary outcomes					
Mortality at different time points, No./total (%)					
Death within 6 mo	25/46 (54)	18/43 (42) ^b	11.3 (-8.1 to 30.1)	OR, 1.58 (0.72 to 3.52)	86.9
Death while in the hospital	25/46 (54)	18/43 (42) ^b	11.3 (-8.1 to 30.1)	OR, 1.58 (0.72 to 3.52)	86.9
Death within 24 h	17/46 (37)	10/44 (23)	12.5 (-5.0 to 29.6)	OR, 1.85 (0.79 to 4.46)	91.8
Death within 6 h	13/46 (28)	4/44 (9)	15.8 (1.8 to 30.4)	OR, 3.14 (1.13 to 9.76)	98.6
Death within 3 h	11/46 (24)	2/44 (5)	15.1 (3.3 to 28.4)	OR, 4.25 (1.33 to 15.99)	99.3

REBOA in trauma: a life-saving intervention or a spectacular failure?

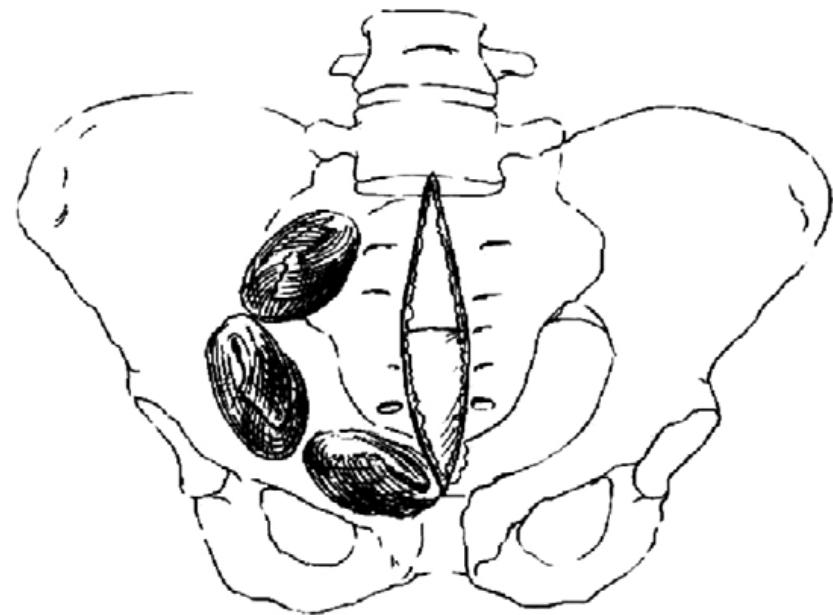
Bellal Joseph¹ · Demetrios Demetriades²

Even in the recently concluded randomized **UK-REBOA trial**, the median time to definitive haemorrhage control surgery was longer in the REBOA group with an average difference of 19 min between the groups, indicating the delay in time to surgery caused by REBOA. **Hence, it may be more useful if REBOA is used as an intraoperative adjunct to control bleeding rather than a preoperative resuscitative intervention.**

The Partial REBOA Outcomes Multicentre ProspecTive (**PROMPT**) Study is the first large-scale multicentre prospective study for partial REBOA which will be conducted across 8 US trauma centres will help us further understand the clinical utility of partial REBOA

Pre peritoneal packing (PPP)

PPP – aspects techniques


1. Fixation du bassin (fixateur externe > binder) pour obtenir paquetage efficace
2. Incision sous ombilicale, sans inciser le péritoine
3. Dissection doigt derrière la symphyse, en longeant le bassin de chaque côté. L'espace à combler a déjà été créé par l'hématome
4. Paqueter avec compresses
5. Fermer fascia
6. Retour SOP quand stabilisé pour retirer compresses

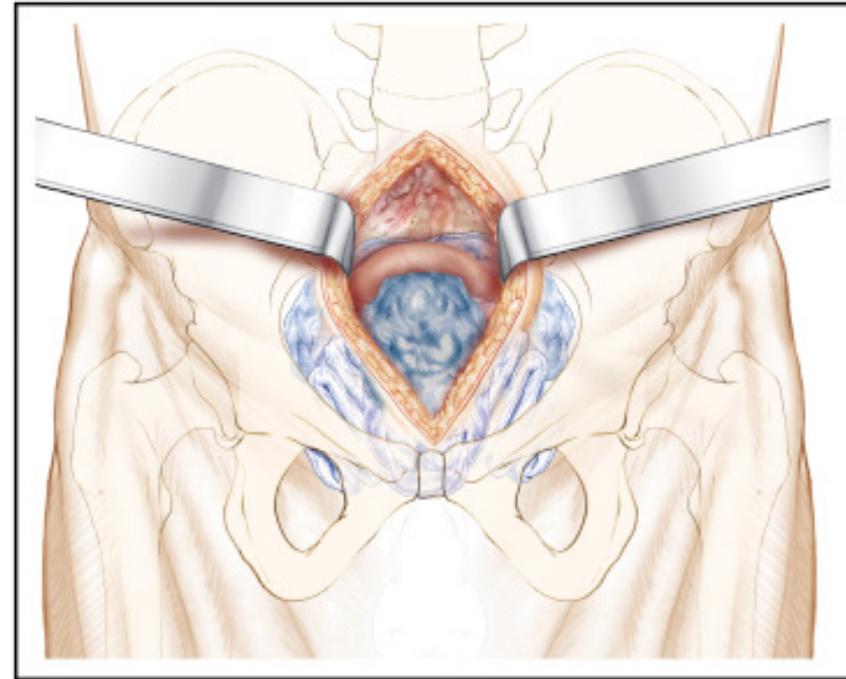
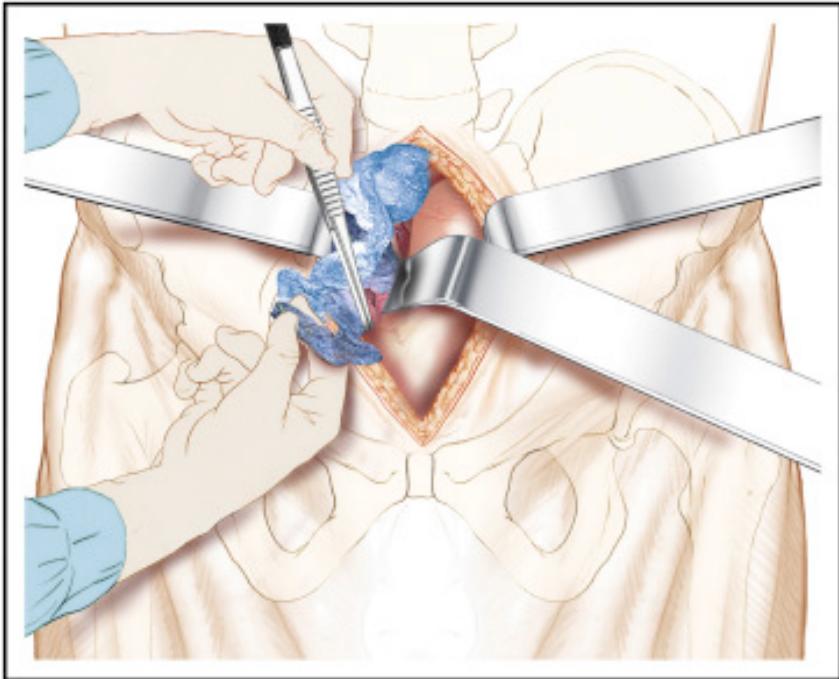


PPP – aspects techniques

Figure 3. Incision selection for PPP with pelvic binder in place.

Pre peritoneal packing

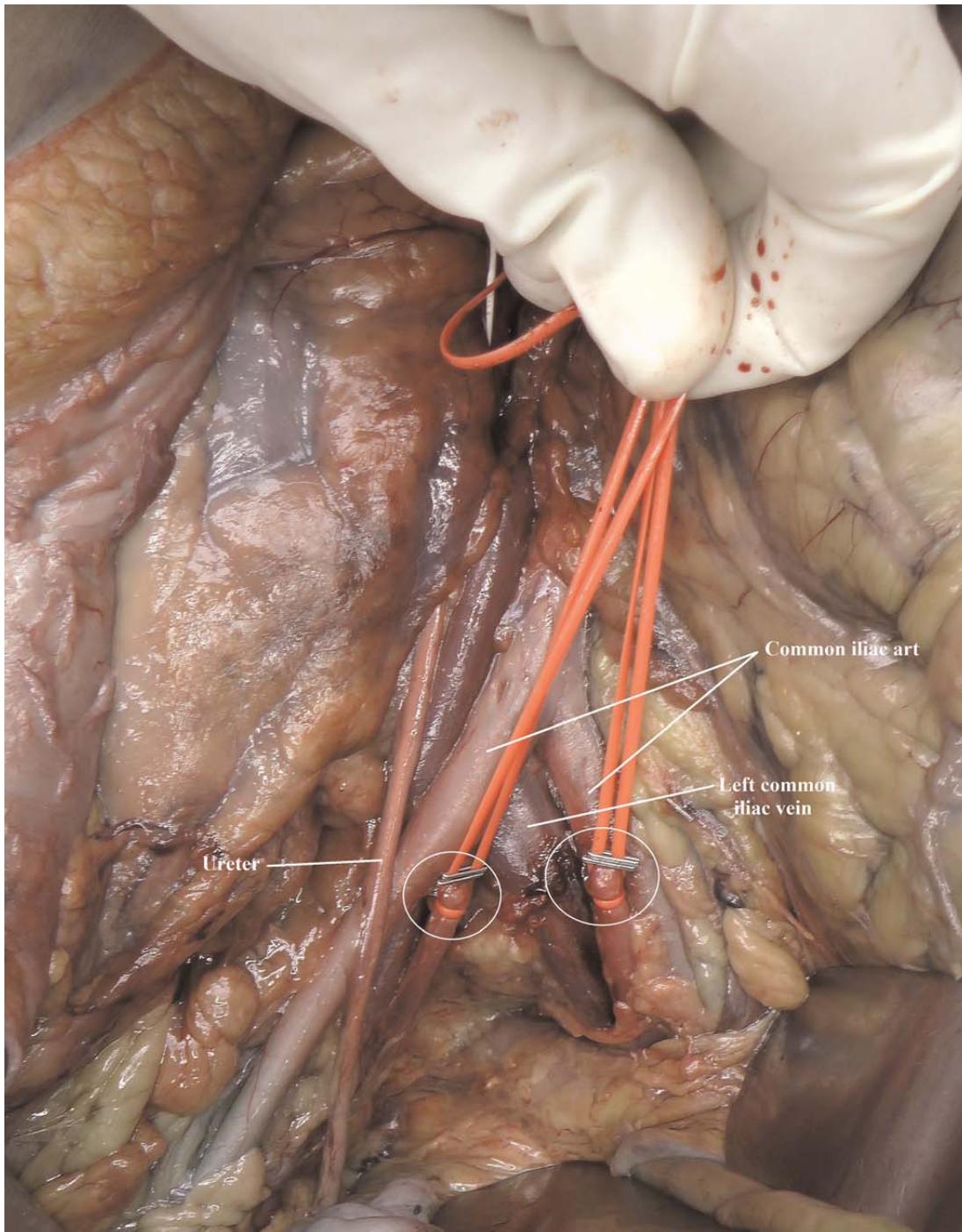
- Effet de tamponnage saignement veineux et osseux, peut aussi contrôler saignement artériel.

Avantages	Inconvénients
Rapide à exécuter.	Technique émergente. Ne pas étendre incision laparotomie sous l'ombilic.
Réduction mortalité vs REBOA ou AE	Complication principale = infection. Déhiscence et thromboembolie.
Réduction transfusion	

Angio embolisation

Angio embolisation

- Saignement origine artérielle dans 10% fracture stable et 59% fracture instable.


Avantages	Inconvénients
Identifier la source du saignement et de la contrôler.	Idéalement, salle d'opération hybride. Au minimum, C-arm.
Pas de « manipulation » de l'hématome rétropéritonéal.	Nécessite mobilisation rapide équipe angiographie. Lien direct entre délai intervention et mortalité. Complications: accès vasculaire, néphropathie contraste, ischémie 2 nd embolisation (nécrose glutéale, etc.)

Ligature artère iliaque externe

Avantages	Inconvénients
<p>Laparotomie permet:</p> <p>Explorer l'abdomen (haute incidence de lésions intra abdo)</p> <p>Explorer vaisseaux (haute incidence de lésions vasculaire)</p> <p>Application agents hémostatiques</p>	<p>Ouvrir l'hématome!!!</p> <p>Rarement efficace (selon le DSTC)</p> <p>Dissection délicate.</p> <p>Complications ischémiques: nécrose glutéale, etc.</p>

Western Trauma Association Critical Decisions in Trauma: Management of pelvic fracture with hemodynamic instability—2016 updates

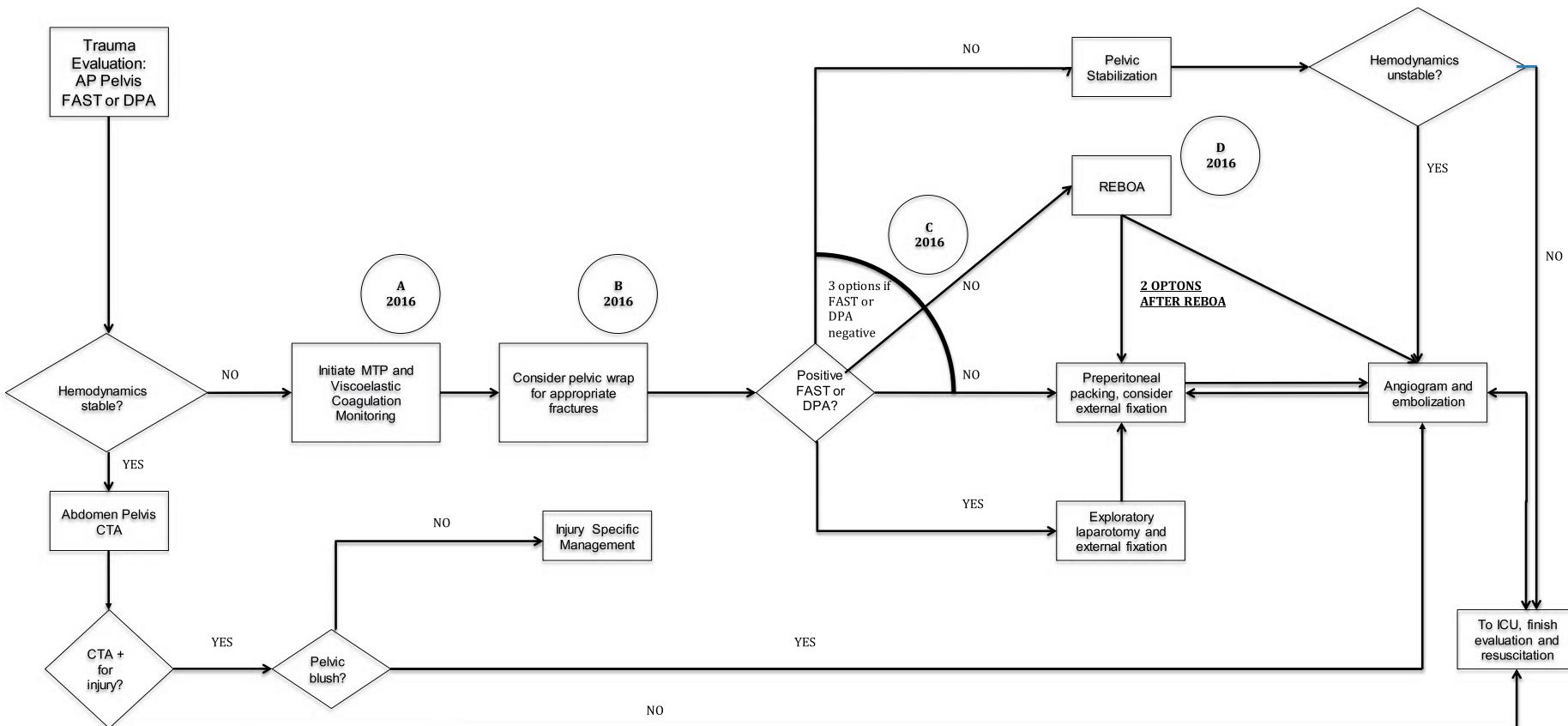


Figure 1. Management of pelvic fracture with hemodynamic instability.

La scène se poursuit...

Après fixation externe du bassin, PPP et poursuite PTM, l'HD s'améliore et la patiente est transférée aux SI. Après stabilisation, elle ira en AE et le PPP sera retiré. Le bassin sera fixé de manière définitive ultérieurement.

Le motocycliste en perte de contrôle est admis également à l'urgence. Il souffre d'une fracture ouverte du fémur D et sa jambe gauche est mutilée (*mangled extremity*) au niveau de la cheville.

L'orthopédiste veut conduire le patient au bloc pour enclouage du fémur et exploration du membre mutilé.

Que désirez-vous vérifier avant de répondre à l'orthopédiste?
Quelle est votre priorité?

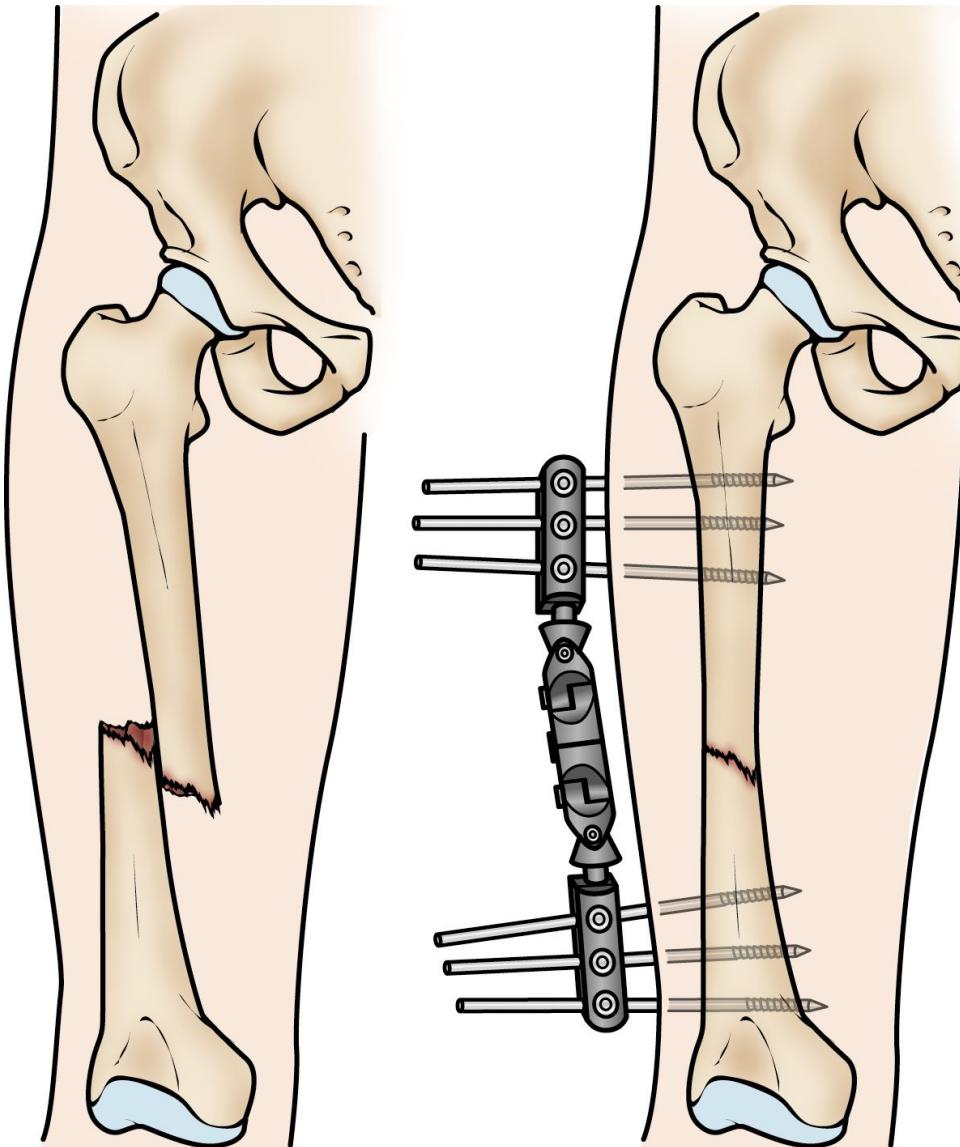
Évaluation ABCDE
Damage control surgery

Damage control surgery

- Principes
 - Temps opératoire < 60 minutes
 - Cesser saignement et réduire la contamination
- S'applique également en orthopédie
 - Stabilisation fracture pour réduire dommage tissulaire et cesser saignement
 - Fixation externe
 - Débridement et lavage plaie
 - Hémostase
 - Fasciotomies

Damage control surgery

Indications
Instabilité HD (Syst < 90 et réfractaire)
Température < 35 degrés C
Instabilité métabolique <ul style="list-style-type: none">• pH < 7,2• EB > 5 et en augmentation• Lactate > 5
Coagulopathie (mesure labo ou ROTEM)
Anatomie chirurgicale <ul style="list-style-type: none">• Procédure prévue longue > 60 minutes• Impossibilité de réparation définitive rapide
Ressources <ul style="list-style-type: none">• PTM• Mass casualty situation• Ressources limitées


Fracture du fémur

- Prise en charge
 - *Damage control resuscitation* si applicable
 - Immobilisation de la fracture réduit risque
 - Oedème, saignement et dommage aux tissus mous
 - Embolie graisseuse
 - Traction-réduction
 - effet tamponnage donc diminue saignement
 - Fixation (externe ou interne) dans les 24 heures réduit
 - Risque TPP et ulcère de décubitus
 - Sévérité synd embolie graisseuse / risque ARDS
 - Une chirurgie trop précoce (< 12 h) pourrait augmenter la mortalité: il faut stabiliser le patient *first!*

Prise en charge

Membre mutilé (*mangled extremity*)

- Combinaison (3/4) atteinte os, tissus mous, vaisseaux et nerfs.
- Priorité
 - Réanimation et contrôle du saignement
 - Pansement compressif
 - Garrot
 - Réduire fracture
 - Évaluer la circulation distale

Western Trauma Association Critical Decisions in Trauma:
Management of the mangled extremity

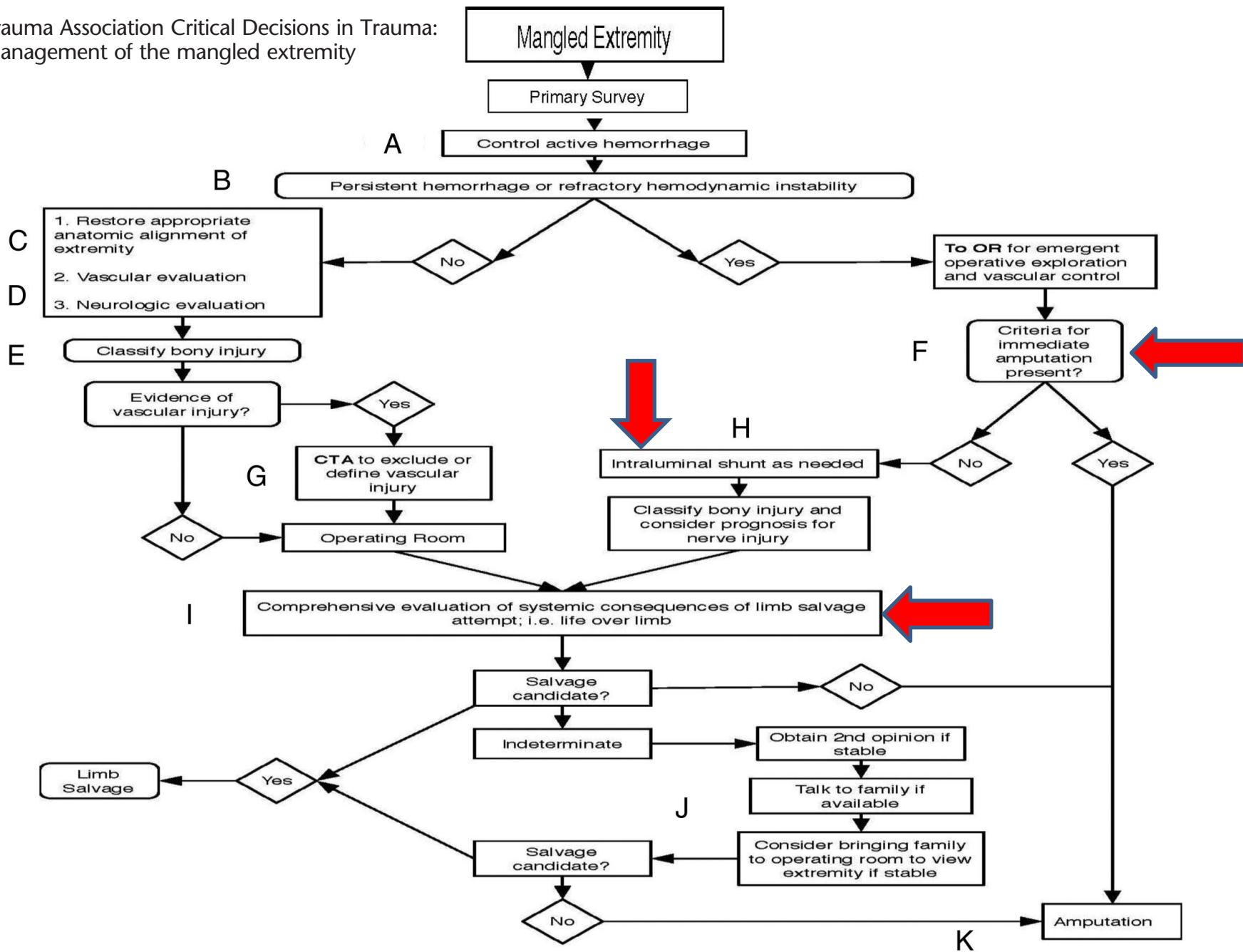


Figure 1. Algorithm for management of patients with mangled extremities.

TABLE 1. Predictors Associated With Need for Amputation of Mangled Extremity

Systemic factors

Age >50 yr^{3,4,8,11}

High energy transfer mechanism^{3,4,8,11}

Persistent hypotension (<90 mm Hg)^{3,4,8,11}

Bony skeletal factors

Gustilo type III A fractures with significant tissue loss or nerve injury, associated fibular fracture and displacement of $>50\%$, and comminuted segmental fracture or high probability of bone graft need^{7,9,11,14}

Gustilo type III B and III C tibial fractures^{7,8,9,11,14}

Type III open fractures of the pilon^{7,8,9,11,14}

Type III B open fractures of the ankle^{7,8,9,11,14}

Severe open injury to the hindfoot or midfoot^{7,8,9,11,14}

Soft tissue factors

Large, circumferential tissue loss^{7,8,9,11,14}

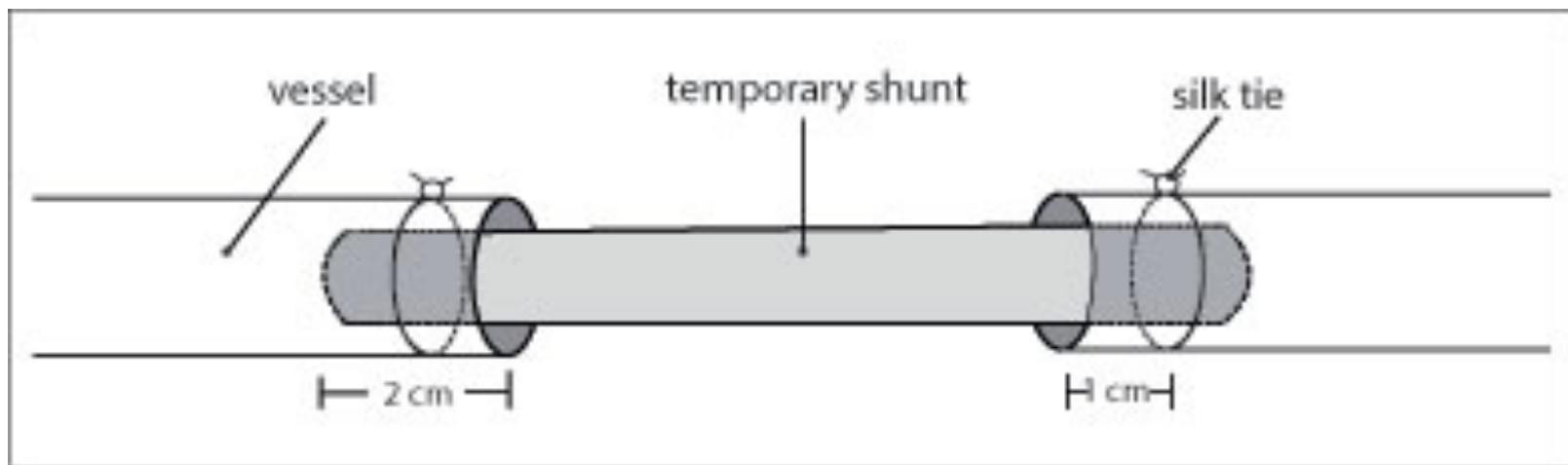
Extensive closed soft tissue loss or necrosis^{7,8,9,11,14}

Compartment syndrome resulting in myonecrosis^{7,8,9,11,14}

Neurologic factors

Confirmed nerve disruption, particularly of tibial nerve^{7,9,11,14}

Vascular factors


Prolonged warm ischemia time (>6 h)^{3,4,7,9,11,14}

Degree of vascular segment loss^{7,9,11,14}

Proximal vascular injury (femoral greater risk than popliteal or more distal)^{7,9,11,14}

Absence of viable distal anastomotic site^{7,9,11,14}

Fig. 1. Illustration of placement of the plastic tubing within a damaged artery to form a temporary intravascular shunt.

Quiz: Où est passée l'Hb?

**Davantage chez obèses
et personnes âgées**

Fracture du bassin	150 mL
Fracture fémur (fermée)	1500 mL
Plaie ouverte (taille d'une main)	750mL
Caillot (taille d'un poing)	500mL
Fracture tibia	3000 mL
Fracture côte	2000 mL
Hémotorax	
Fracture humérus	

La garde se poursuit...

Fixateur externe du fémur D et cheville G.
Circulation distale adéquate. Évaluation
neurologique à venir.

Prochain patient!

H 45 ans, piéton-auto. Fracture ouverte tibia G (diaphyse). Ortho veut faire enclouage tibia.
“Je ne veux pas que tu fasses de bloc, ça va camoufler les signes d'un **syndrome du compartiment.**”

Qu'en pensez-vous?

Regional anesthesia and acute compartment syndrome: principles for practice

Tim Dwyer,^{1,2,3} David Burns,⁴ Aaron Nauth,^{1,5} Kaitlin Kawam,⁴ Richard Brull

Dwyer T, et al. Reg Anesth Pain Med 2021;46:1091–1099. doi:10.1136/rappm-2021-102735

Regional Anesthesia and Compartment Syndrome

Peter Marhofer, MD,* Jens Halm, MD,† Georg C. Feigl, MD,‡ Tim Schepers, MD,† and Markus W. Hollmann, MD, PhD§

November 2021 • Volume 133 • Number 5

Étiologies en trauma

- œdème dans un compartiment myofascial rigide secondaire
 - Fracture, le plus fréquemment
 - Lésion vasculaire
 - Crush injury
- Peut se produire avant ou après la chirurgie
- La contribution de la chirurgie dans le développement sd du compartiment n'est pas clair.
- Le **trauma initial** est le principal facteur pour développer un sd du compartiment ET une chirurgie précoce pourrait en réduire le risque.

Manifestations

- Localisation
 - Plus communes: avant-bras, jambe, pied.
 - Aussi: main, cuisse, fesse.
- Signes et symptômes
 - **Douleur** hors de proportion
 - **Douleur** étirement passif compartiment musculaire
 - **Paresthésies**
 - Fonction motrice préservée tardivement
 - La présence d'un pouls et/ou une coloration normale n'excluent pas un syndrome du compartiment

Fractures MI	Incidence	Recommandations
Tibia (diaphyse)	3-30%	RA should not be considered
Plateau tibial	1,7-12%	High energy: should not Low energy: with caution
Pilon tibial	2-2,6%	RA may be considered with caution
Fémur (diaphyse)	Rare	RA may be considered with caution
Pied	Lisfranc plus de 20% Calcaneum 3,8-23%	RA may be considered, with the exception of high velocity injury
Cheville	Rare	RA may be considered in nearly all cases
Hanche	Rare	RA may be considered in all cases

Fractures MS	Incidence	Recommandations
Avant-bras	15% (si deux os)	RA should not be considered in dual bone fractures OR high energy single bone fracture.
Radius distal	0,4% 1,4% chez moins de 35 ans	RA may be considered in all cases, except young patient and high energy injuries
Fracture – luxation coude	Rare	RA may be considered in all cases, except high energy injuries
Humérus (proximal, diaphyse, distal)	Rare	RA may be considered in all cases

Pourquoi ne pas mesurer les pressions?

- Différentes techniques de mesure pression intracompartmentale
 - Canule artérielle
 - STIC catheter
- Faut savoir où piquer!
- Pression diastolique - pression IC < 30 mm Hg

Dans un contexte de monitoring continu (fracture tibia), pas de corrélation entre les valeurs de pression et les symptômes cliniques.

Traitement

- Fasciotomies rapides
 - < 4 heures = aucune conséquence attendue
 - 6 heures = récupération variable fonctions nerveuse et musculaire
 - > 8 heures = dommage nerveux et musculaire irréversible
- Pourquoi ne pas faire des fascio à tous??
Complications...
 - Infection
 - Saignement (suintement)

On fait quoi?!?!

7 piliers pour la détection rapide du syndrome du compartiment

- I. Douleur et paresthésie ont faible sensibilité mais une haute spécificité
- II. Attention particulière aux fractures à risque
- III. Dose et concentration minimale d'AL
- IV. Toute douleur disproportionnée demande évaluation immédiate
- V. Diagnostic doit être basé sur l'examen physique, parfois assisté la mesure des pressions intracompartmentales
- VI. Comorbidités (coagulopathie) doit influencer le suivi des patients
- VII. Fasciotomies libérales

L'histoire achève...

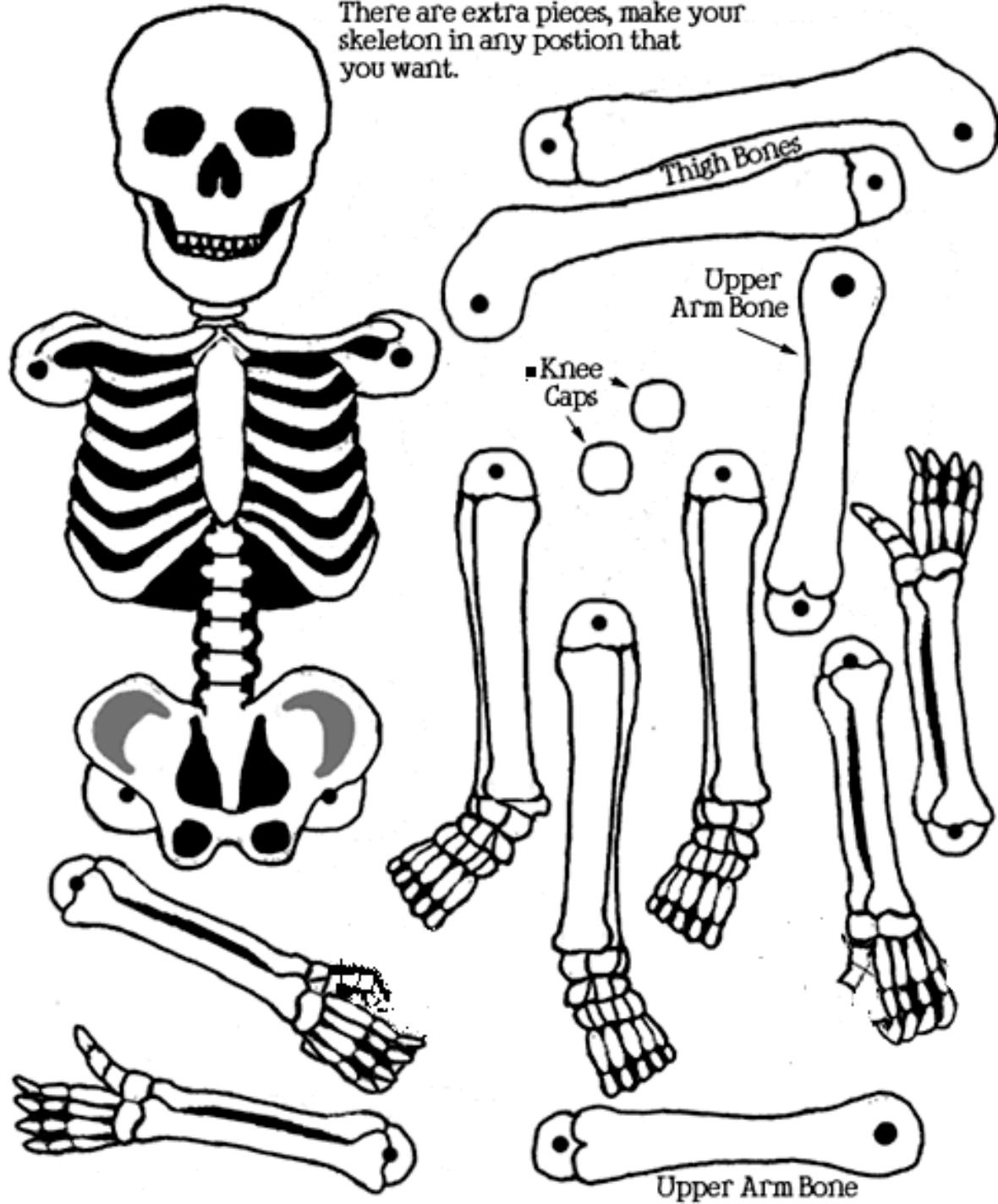
Après discussion avec chirurgien, vous apprenez que son plan prévoyait des fasciotomies d'emblée. Il accepte un bloc avec AL dilué.

Puisque nous y sommes, pourquoi ne pas opérer aussi ce radius cassé?

Vous laisserez ce cas à l'anesthésiste de jour. =)

En résumé

Les trauma musculosquelettiques, c'est beaucoup plus que des os à réparer.


“There is a fracture, I need to fix it”

Multiples implication au niveau *circulation*

C-A-B

Damage control resuscitation and surgery

There are extra pieces, make your skeleton in any position that you want.

Questions?